This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0gsumfz.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| nn0gsumfz.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| nn0gsumfz.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| nn0gsumfz.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) | ||
| fsfnn0gsumfsffz.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | ||
| fsfnn0gsumfsffz.h | ⊢ 𝐻 = ( 𝐹 ↾ ( 0 ... 𝑆 ) ) | ||
| Assertion | fsfnn0gsumfsffz | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0gsumfz.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | nn0gsumfz.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | nn0gsumfz.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | nn0gsumfz.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) | |
| 5 | fsfnn0gsumfsffz.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | |
| 6 | fsfnn0gsumfsffz.h | ⊢ 𝐻 = ( 𝐹 ↾ ( 0 ... 𝑆 ) ) | |
| 7 | 6 | oveq2i | ⊢ ( 𝐺 Σg 𝐻 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑆 ) ) ) |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → 𝐺 ∈ CMnd ) |
| 9 | nn0ex | ⊢ ℕ0 ∈ V | |
| 10 | 9 | a1i | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ℕ0 ∈ V ) |
| 11 | elmapi | ⊢ ( 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) → 𝐹 : ℕ0 ⟶ 𝐵 ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ 𝐵 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → 𝐹 : ℕ0 ⟶ 𝐵 ) |
| 14 | 2 | fvexi | ⊢ 0 ∈ V |
| 15 | 14 | a1i | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → 0 ∈ V ) |
| 16 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) |
| 17 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → 𝑆 ∈ ℕ0 ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) | |
| 19 | 15 16 17 18 | suppssfz | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ( 𝐹 supp 0 ) ⊆ ( 0 ... 𝑆 ) ) |
| 20 | elmapfun | ⊢ ( 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) → Fun 𝐹 ) | |
| 21 | 4 20 | syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 22 | 14 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 23 | 4 21 22 | 3jca | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ∧ Fun 𝐹 ∧ 0 ∈ V ) ) |
| 24 | fzfid | ⊢ ( 𝜑 → ( 0 ... 𝑆 ) ∈ Fin ) | |
| 25 | 24 | anim1i | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) ⊆ ( 0 ... 𝑆 ) ) → ( ( 0 ... 𝑆 ) ∈ Fin ∧ ( 𝐹 supp 0 ) ⊆ ( 0 ... 𝑆 ) ) ) |
| 26 | suppssfifsupp | ⊢ ( ( ( 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ∧ Fun 𝐹 ∧ 0 ∈ V ) ∧ ( ( 0 ... 𝑆 ) ∈ Fin ∧ ( 𝐹 supp 0 ) ⊆ ( 0 ... 𝑆 ) ) ) → 𝐹 finSupp 0 ) | |
| 27 | 23 25 26 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) ⊆ ( 0 ... 𝑆 ) ) → 𝐹 finSupp 0 ) |
| 28 | 19 27 | syldan | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → 𝐹 finSupp 0 ) |
| 29 | 1 2 8 10 13 19 28 | gsumres | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑆 ) ) ) = ( 𝐺 Σg 𝐹 ) ) |
| 30 | 7 29 | eqtr2id | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ) |
| 31 | 30 | ex | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ) ) |