This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set in the supremum of the operator norm definition df-nmoo is nonempty. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmosetn0.1 | |- X = ( BaseSet ` U ) |
|
| nmosetn0.5 | |- Z = ( 0vec ` U ) |
||
| nmosetn0.4 | |- M = ( normCV ` U ) |
||
| Assertion | nmosetn0 | |- ( U e. NrmCVec -> ( N ` ( T ` Z ) ) e. { x | E. y e. X ( ( M ` y ) <_ 1 /\ x = ( N ` ( T ` y ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmosetn0.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nmosetn0.5 | |- Z = ( 0vec ` U ) |
|
| 3 | nmosetn0.4 | |- M = ( normCV ` U ) |
|
| 4 | 1 2 | nvzcl | |- ( U e. NrmCVec -> Z e. X ) |
| 5 | 2 3 | nvz0 | |- ( U e. NrmCVec -> ( M ` Z ) = 0 ) |
| 6 | 0le1 | |- 0 <_ 1 |
|
| 7 | 5 6 | eqbrtrdi | |- ( U e. NrmCVec -> ( M ` Z ) <_ 1 ) |
| 8 | eqid | |- ( N ` ( T ` Z ) ) = ( N ` ( T ` Z ) ) |
|
| 9 | 7 8 | jctir | |- ( U e. NrmCVec -> ( ( M ` Z ) <_ 1 /\ ( N ` ( T ` Z ) ) = ( N ` ( T ` Z ) ) ) ) |
| 10 | fveq2 | |- ( y = Z -> ( M ` y ) = ( M ` Z ) ) |
|
| 11 | 10 | breq1d | |- ( y = Z -> ( ( M ` y ) <_ 1 <-> ( M ` Z ) <_ 1 ) ) |
| 12 | 2fveq3 | |- ( y = Z -> ( N ` ( T ` y ) ) = ( N ` ( T ` Z ) ) ) |
|
| 13 | 12 | eqeq2d | |- ( y = Z -> ( ( N ` ( T ` Z ) ) = ( N ` ( T ` y ) ) <-> ( N ` ( T ` Z ) ) = ( N ` ( T ` Z ) ) ) ) |
| 14 | 11 13 | anbi12d | |- ( y = Z -> ( ( ( M ` y ) <_ 1 /\ ( N ` ( T ` Z ) ) = ( N ` ( T ` y ) ) ) <-> ( ( M ` Z ) <_ 1 /\ ( N ` ( T ` Z ) ) = ( N ` ( T ` Z ) ) ) ) ) |
| 15 | 14 | rspcev | |- ( ( Z e. X /\ ( ( M ` Z ) <_ 1 /\ ( N ` ( T ` Z ) ) = ( N ` ( T ` Z ) ) ) ) -> E. y e. X ( ( M ` y ) <_ 1 /\ ( N ` ( T ` Z ) ) = ( N ` ( T ` y ) ) ) ) |
| 16 | 4 9 15 | syl2anc | |- ( U e. NrmCVec -> E. y e. X ( ( M ` y ) <_ 1 /\ ( N ` ( T ` Z ) ) = ( N ` ( T ` y ) ) ) ) |
| 17 | fvex | |- ( N ` ( T ` Z ) ) e. _V |
|
| 18 | eqeq1 | |- ( x = ( N ` ( T ` Z ) ) -> ( x = ( N ` ( T ` y ) ) <-> ( N ` ( T ` Z ) ) = ( N ` ( T ` y ) ) ) ) |
|
| 19 | 18 | anbi2d | |- ( x = ( N ` ( T ` Z ) ) -> ( ( ( M ` y ) <_ 1 /\ x = ( N ` ( T ` y ) ) ) <-> ( ( M ` y ) <_ 1 /\ ( N ` ( T ` Z ) ) = ( N ` ( T ` y ) ) ) ) ) |
| 20 | 19 | rexbidv | |- ( x = ( N ` ( T ` Z ) ) -> ( E. y e. X ( ( M ` y ) <_ 1 /\ x = ( N ` ( T ` y ) ) ) <-> E. y e. X ( ( M ` y ) <_ 1 /\ ( N ` ( T ` Z ) ) = ( N ` ( T ` y ) ) ) ) ) |
| 21 | 17 20 | elab | |- ( ( N ` ( T ` Z ) ) e. { x | E. y e. X ( ( M ` y ) <_ 1 /\ x = ( N ` ( T ` y ) ) ) } <-> E. y e. X ( ( M ` y ) <_ 1 /\ ( N ` ( T ` Z ) ) = ( N ` ( T ` y ) ) ) ) |
| 22 | 16 21 | sylibr | |- ( U e. NrmCVec -> ( N ` ( T ` Z ) ) e. { x | E. y e. X ( ( M ` y ) <_ 1 /\ x = ( N ` ( T ` y ) ) ) } ) |