This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nmopadji . (Contributed by NM, 22-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmopadjle.1 | ⊢ 𝑇 ∈ BndLinOp | |
| Assertion | nmopadjlem | ⊢ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmopadjle.1 | ⊢ 𝑇 ∈ BndLinOp | |
| 2 | adjbdln | ⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) | |
| 3 | bdopf | ⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ |
| 5 | bdopf | ⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 6 | nmopxr | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) ∈ ℝ* ) | |
| 7 | 1 5 6 | mp2b | ⊢ ( normop ‘ 𝑇 ) ∈ ℝ* |
| 8 | nmopub | ⊢ ( ( ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ ( normop ‘ 𝑇 ) ∈ ℝ* ) → ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑇 ) ↔ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ≤ ( normop ‘ 𝑇 ) ) ) ) | |
| 9 | 4 7 8 | mp2an | ⊢ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑇 ) ↔ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ≤ ( normop ‘ 𝑇 ) ) ) |
| 10 | 4 | ffvelcdmi | ⊢ ( 𝑦 ∈ ℋ → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) |
| 11 | normcl | ⊢ ( ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ∈ ℝ ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ∈ ℝ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ∈ ℝ ) |
| 14 | nmopre | ⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) | |
| 15 | 1 14 | ax-mp | ⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 16 | normcl | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℝ ) | |
| 17 | remulcl | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) | |
| 18 | 15 16 17 | sylancr | ⊢ ( 𝑦 ∈ ℋ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
| 20 | 1re | ⊢ 1 ∈ ℝ | |
| 21 | 15 20 | remulcli | ⊢ ( ( normop ‘ 𝑇 ) · 1 ) ∈ ℝ |
| 22 | 21 | a1i | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( ( normop ‘ 𝑇 ) · 1 ) ∈ ℝ ) |
| 23 | 1 | nmopadjlei | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
| 25 | nmopge0 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ 𝑇 ) ) | |
| 26 | 1 5 25 | mp2b | ⊢ 0 ≤ ( normop ‘ 𝑇 ) |
| 27 | 15 26 | pm3.2i | ⊢ ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ 0 ≤ ( normop ‘ 𝑇 ) ) |
| 28 | lemul2a | ⊢ ( ( ( ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ 0 ≤ ( normop ‘ 𝑇 ) ) ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · 1 ) ) | |
| 29 | 27 28 | mp3anl3 | ⊢ ( ( ( ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · 1 ) ) |
| 30 | 20 29 | mpanl2 | ⊢ ( ( ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · 1 ) ) |
| 31 | 16 30 | sylan | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · 1 ) ) |
| 32 | 13 19 22 24 31 | letrd | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · 1 ) ) |
| 33 | 15 | recni | ⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
| 34 | 33 | mulridi | ⊢ ( ( normop ‘ 𝑇 ) · 1 ) = ( normop ‘ 𝑇 ) |
| 35 | 32 34 | breqtrdi | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 36 | 35 | ex | ⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ 𝑦 ) ≤ 1 → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ≤ ( normop ‘ 𝑇 ) ) ) |
| 37 | 9 36 | mprgbir | ⊢ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑇 ) |