This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the norm of an adjoint. Theorem 3.11(v) of Beran p. 106. (Contributed by NM, 22-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmopadjle.1 | ⊢ 𝑇 ∈ BndLinOp | |
| Assertion | nmopadji | ⊢ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) = ( normop ‘ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmopadjle.1 | ⊢ 𝑇 ∈ BndLinOp | |
| 2 | 1 | nmopadjlem | ⊢ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑇 ) |
| 3 | bdopadj | ⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ ) | |
| 4 | 1 3 | ax-mp | ⊢ 𝑇 ∈ dom adjℎ |
| 5 | adjadj | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) | |
| 6 | 4 5 | ax-mp | ⊢ ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 |
| 7 | 6 | fveq2i | ⊢ ( normop ‘ ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ) = ( normop ‘ 𝑇 ) |
| 8 | adjbdln | ⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) | |
| 9 | 1 8 | ax-mp | ⊢ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp |
| 10 | 9 | nmopadjlem | ⊢ ( normop ‘ ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ) ≤ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) |
| 11 | 7 10 | eqbrtrri | ⊢ ( normop ‘ 𝑇 ) ≤ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) |
| 12 | nmopre | ⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ∈ ℝ ) | |
| 13 | 9 12 | ax-mp | ⊢ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ∈ ℝ |
| 14 | nmopre | ⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) | |
| 15 | 1 14 | ax-mp | ⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 16 | 13 15 | letri3i | ⊢ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) = ( normop ‘ 𝑇 ) ↔ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑇 ) ∧ ( normop ‘ 𝑇 ) ≤ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ) ) |
| 17 | 2 11 16 | mpbir2an | ⊢ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) = ( normop ‘ 𝑇 ) |