This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the norm of an adjoint. Part of proof of Theorem 3.10 of Beran p. 104. (Contributed by NM, 22-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmopadjle.1 | ⊢ 𝑇 ∈ BndLinOp | |
| Assertion | nmopadjlei | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmopadjle.1 | ⊢ 𝑇 ∈ BndLinOp | |
| 2 | bdopssadj | ⊢ BndLinOp ⊆ dom adjℎ | |
| 3 | 2 1 | sselii | ⊢ 𝑇 ∈ dom adjℎ |
| 4 | adjvalval | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) = ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐴 ∈ ℋ → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) = ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
| 6 | oveq2 | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑧 = 𝐴 → ( ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
| 8 | 7 | ralbidv | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
| 9 | 8 | riotabidv | ⊢ ( 𝑧 = 𝐴 → ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) = ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
| 10 | eqid | ⊢ ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) = ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) | |
| 11 | riotaex | ⊢ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ∈ V | |
| 12 | 9 10 11 | fvmpt | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) ‘ 𝐴 ) = ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
| 13 | 5 12 | eqtr4d | ⊢ ( 𝐴 ∈ ℋ → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) = ( ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) ‘ 𝐴 ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) ‘ 𝐴 ) ) ) |
| 15 | inss1 | ⊢ ( LinOp ∩ ContOp ) ⊆ LinOp | |
| 16 | lncnbd | ⊢ ( LinOp ∩ ContOp ) = BndLinOp | |
| 17 | 1 16 | eleqtrri | ⊢ 𝑇 ∈ ( LinOp ∩ ContOp ) |
| 18 | 15 17 | sselii | ⊢ 𝑇 ∈ LinOp |
| 19 | inss2 | ⊢ ( LinOp ∩ ContOp ) ⊆ ContOp | |
| 20 | 19 17 | sselii | ⊢ 𝑇 ∈ ContOp |
| 21 | eqid | ⊢ ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑧 ) ) = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑧 ) ) | |
| 22 | oveq2 | ⊢ ( 𝑓 = 𝑤 → ( 𝑣 ·ih 𝑓 ) = ( 𝑣 ·ih 𝑤 ) ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑓 = 𝑤 → ( ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
| 24 | 23 | ralbidv | ⊢ ( 𝑓 = 𝑤 → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
| 25 | 24 | cbvriotavw | ⊢ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 26 | 18 20 21 25 10 | cnlnadjlem7 | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 27 | 14 26 | eqbrtrd | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |