This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bounded sequence determines a bounded operator. (Contributed by NM, 18-Jan-2008) (Revised by Mario Carneiro, 7-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | ||
| nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | ||
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | nmobndseqi | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | |
| 4 | nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 5 | nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 6 | nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | |
| 8 | impexp | ⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ( ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) | |
| 9 | r19.35 | ⊢ ( ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ( ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) | |
| 10 | 9 | imbi2i | ⊢ ( ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ( ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 11 | 8 10 | bitr4i | ⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 12 | 11 | albii | ⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 13 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 14 | nnenom | ⊢ ℕ ≈ ω | |
| 15 | fveq2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( 𝐿 ‘ 𝑦 ) = ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | |
| 16 | 15 | breq1d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ↔ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) ) |
| 17 | 2fveq3 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) | |
| 18 | 17 | breq1d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ↔ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) |
| 19 | 16 18 | imbi12d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 20 | 19 | notbid | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 21 | 13 14 20 | axcc4 | ⊢ ( ∀ 𝑘 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 22 | 21 | con3i | ⊢ ( ¬ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) → ¬ ∀ 𝑘 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 23 | dfrex2 | ⊢ ( ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ¬ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) | |
| 24 | 23 | imbi2i | ⊢ ( ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ¬ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 25 | 24 | albii | ⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ¬ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 26 | alinexa | ⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ¬ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ↔ ¬ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) | |
| 27 | 25 26 | bitri | ⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ↔ ¬ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 28 | dfral2 | ⊢ ( ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ¬ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) | |
| 29 | 28 | rexbii | ⊢ ( ∃ 𝑘 ∈ ℕ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ∃ 𝑘 ∈ ℕ ¬ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 30 | rexnal | ⊢ ( ∃ 𝑘 ∈ ℕ ¬ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ¬ ∀ 𝑘 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) | |
| 31 | 29 30 | bitri | ⊢ ( ∃ 𝑘 ∈ ℕ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ¬ ∀ 𝑘 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 32 | 22 27 31 | 3imtr4i | ⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 33 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 34 | 33 | anim1i | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) → ( 𝑘 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) ) |
| 35 | 34 | reximi2 | ⊢ ( ∃ 𝑘 ∈ ℕ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 36 | 32 35 | syl | ⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 37 | 12 36 | sylbi | ⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 38 | 1 2 3 4 5 6 7 | nmobndi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) ) |
| 39 | 37 38 | imbitrrid | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) ) |
| 40 | 39 | imp | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) |