This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of an n-locally A topological space. (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nllyi | ⊢ ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑢 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnlly | ⊢ ( 𝐽 ∈ 𝑛-Locally 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝐽 ∈ 𝑛-Locally 𝐴 → ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) |
| 3 | pweq | ⊢ ( 𝑥 = 𝑈 → 𝒫 𝑥 = 𝒫 𝑈 ) | |
| 4 | 3 | ineq2d | ⊢ ( 𝑥 = 𝑈 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑈 ) ) |
| 5 | 4 | rexeqdv | ⊢ ( 𝑥 = 𝑈 → ( ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ↔ ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑈 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 6 | 5 | raleqbi1dv | ⊢ ( 𝑥 = 𝑈 → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ↔ ∀ 𝑦 ∈ 𝑈 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑈 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 7 | 6 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ∧ 𝑈 ∈ 𝐽 ) → ∀ 𝑦 ∈ 𝑈 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑈 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) |
| 8 | 2 7 | sylan | ⊢ ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ) → ∀ 𝑦 ∈ 𝑈 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑈 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) |
| 9 | elin | ⊢ ( 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑈 ) ↔ ( 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∧ 𝑢 ∈ 𝒫 𝑈 ) ) | |
| 10 | sneq | ⊢ ( 𝑦 = 𝑃 → { 𝑦 } = { 𝑃 } ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑦 = 𝑃 → ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) |
| 12 | 11 | eleq2d | ⊢ ( 𝑦 = 𝑃 → ( 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↔ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) |
| 13 | velpw | ⊢ ( 𝑢 ∈ 𝒫 𝑈 ↔ 𝑢 ⊆ 𝑈 ) | |
| 14 | 13 | a1i | ⊢ ( 𝑦 = 𝑃 → ( 𝑢 ∈ 𝒫 𝑈 ↔ 𝑢 ⊆ 𝑈 ) ) |
| 15 | 12 14 | anbi12d | ⊢ ( 𝑦 = 𝑃 → ( ( 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∧ 𝑢 ∈ 𝒫 𝑈 ) ↔ ( 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ 𝑢 ⊆ 𝑈 ) ) ) |
| 16 | 9 15 | bitrid | ⊢ ( 𝑦 = 𝑃 → ( 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑈 ) ↔ ( 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ 𝑢 ⊆ 𝑈 ) ) ) |
| 17 | 16 | anbi1d | ⊢ ( 𝑦 = 𝑃 → ( ( 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑈 ) ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ↔ ( ( 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ 𝑢 ⊆ 𝑈 ) ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
| 18 | anass | ⊢ ( ( ( 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ 𝑢 ⊆ 𝑈 ) ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ↔ ( 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑢 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) | |
| 19 | 17 18 | bitrdi | ⊢ ( 𝑦 = 𝑃 → ( ( 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑈 ) ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ↔ ( 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑢 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) ) |
| 20 | 19 | rexbidv2 | ⊢ ( 𝑦 = 𝑃 → ( ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑈 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ↔ ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑢 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
| 21 | 20 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝑈 ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑈 ) ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ∧ 𝑃 ∈ 𝑈 ) → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑢 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
| 22 | 8 21 | stoic3 | ⊢ ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) → ∃ 𝑢 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑢 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |