This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubpropd2.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| grpsubpropd2.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐻 ) ) | ||
| grpsubpropd2.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| grpsubpropd2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) | ||
| Assertion | grpsubpropd2 | ⊢ ( 𝜑 → ( -g ‘ 𝐺 ) = ( -g ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubpropd2.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| 2 | grpsubpropd2.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐻 ) ) | |
| 3 | grpsubpropd2.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | grpsubpropd2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) | |
| 5 | simp1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → 𝜑 ) | |
| 6 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → 𝑎 ∈ ( Base ‘ 𝐺 ) ) | |
| 7 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 8 | 6 7 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → 𝑎 ∈ 𝐵 ) |
| 9 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → 𝐺 ∈ Grp ) |
| 10 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → 𝑏 ∈ ( Base ‘ 𝐺 ) ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 12 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 13 | 11 12 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝐺 ) ) |
| 14 | 9 10 13 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ∈ ( Base ‘ 𝐺 ) ) |
| 15 | 14 7 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ∈ 𝐵 ) |
| 16 | 4 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) |
| 17 | 5 8 15 16 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) |
| 18 | 1 2 4 | grpinvpropd | ⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( invg ‘ 𝐻 ) ) |
| 19 | 18 | fveq1d | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) |
| 20 | 19 | oveq2d | ⊢ ( 𝜑 → ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) |
| 22 | 17 21 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) |
| 23 | 22 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐺 ) , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) = ( 𝑎 ∈ ( Base ‘ 𝐺 ) , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) ) |
| 24 | 1 2 | eqtr3d | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) |
| 25 | mpoeq12 | ⊢ ( ( ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ∧ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) = ( 𝑎 ∈ ( Base ‘ 𝐻 ) , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) ) | |
| 26 | 24 24 25 | syl2anc | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐺 ) , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) = ( 𝑎 ∈ ( Base ‘ 𝐻 ) , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) ) |
| 27 | 23 26 | eqtrd | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐺 ) , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) = ( 𝑎 ∈ ( Base ‘ 𝐻 ) , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) ) |
| 28 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 29 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 30 | 11 28 12 29 | grpsubfval | ⊢ ( -g ‘ 𝐺 ) = ( 𝑎 ∈ ( Base ‘ 𝐺 ) , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) |
| 31 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 32 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 33 | eqid | ⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) | |
| 34 | eqid | ⊢ ( -g ‘ 𝐻 ) = ( -g ‘ 𝐻 ) | |
| 35 | 31 32 33 34 | grpsubfval | ⊢ ( -g ‘ 𝐻 ) = ( 𝑎 ∈ ( Base ‘ 𝐻 ) , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) |
| 36 | 27 30 35 | 3eqtr4g | ⊢ ( 𝜑 → ( -g ‘ 𝐺 ) = ( -g ‘ 𝐻 ) ) |