This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strong property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmpropd2.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| nmpropd2.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| nmpropd2.3 | ⊢ ( 𝜑 → 𝐾 ∈ Grp ) | ||
| nmpropd2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| nmpropd2.5 | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| Assertion | nmpropd2 | ⊢ ( 𝜑 → ( norm ‘ 𝐾 ) = ( norm ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmpropd2.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | nmpropd2.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | nmpropd2.3 | ⊢ ( 𝜑 → 𝐾 ∈ Grp ) | |
| 4 | nmpropd2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 5 | nmpropd2.5 | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 6 | 1 2 | eqtr3d | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 7 | 1 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 8 | 7 | reseq2d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 9 | 5 8 | eqtr3d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 10 | 2 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) |
| 11 | 10 | reseq2d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 12 | 9 11 | eqtr3d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 13 | eqidd | ⊢ ( 𝜑 → 𝑎 = 𝑎 ) | |
| 14 | 1 2 4 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 15 | 12 13 14 | oveq123d | ⊢ ( 𝜑 → ( 𝑎 ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ( 0g ‘ 𝐾 ) ) = ( 𝑎 ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ( 0g ‘ 𝐿 ) ) ) |
| 16 | 6 15 | mpteq12dv | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑎 ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ( 0g ‘ 𝐾 ) ) ) = ( 𝑎 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑎 ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ( 0g ‘ 𝐿 ) ) ) ) |
| 17 | eqid | ⊢ ( norm ‘ 𝐾 ) = ( norm ‘ 𝐾 ) | |
| 18 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 19 | eqid | ⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) | |
| 20 | eqid | ⊢ ( dist ‘ 𝐾 ) = ( dist ‘ 𝐾 ) | |
| 21 | eqid | ⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) | |
| 22 | 17 18 19 20 21 | nmfval2 | ⊢ ( 𝐾 ∈ Grp → ( norm ‘ 𝐾 ) = ( 𝑎 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑎 ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ( 0g ‘ 𝐾 ) ) ) ) |
| 23 | 3 22 | syl | ⊢ ( 𝜑 → ( norm ‘ 𝐾 ) = ( 𝑎 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑎 ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ( 0g ‘ 𝐾 ) ) ) ) |
| 24 | 1 2 4 | grppropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp ) ) |
| 25 | 3 24 | mpbid | ⊢ ( 𝜑 → 𝐿 ∈ Grp ) |
| 26 | eqid | ⊢ ( norm ‘ 𝐿 ) = ( norm ‘ 𝐿 ) | |
| 27 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 28 | eqid | ⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) | |
| 29 | eqid | ⊢ ( dist ‘ 𝐿 ) = ( dist ‘ 𝐿 ) | |
| 30 | eqid | ⊢ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) | |
| 31 | 26 27 28 29 30 | nmfval2 | ⊢ ( 𝐿 ∈ Grp → ( norm ‘ 𝐿 ) = ( 𝑎 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑎 ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ( 0g ‘ 𝐿 ) ) ) ) |
| 32 | 25 31 | syl | ⊢ ( 𝜑 → ( norm ‘ 𝐿 ) = ( 𝑎 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑎 ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ( 0g ‘ 𝐿 ) ) ) ) |
| 33 | 16 23 32 | 3eqtr4d | ⊢ ( 𝜑 → ( norm ‘ 𝐾 ) = ( norm ‘ 𝐿 ) ) |