This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point P belongs to the closure of a set S iff every neighborhood of P meets S . (Contributed by FL, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tpnei.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | neindisj2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpnei.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | elcls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 3 | 1 | isneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑛 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛 ) ) ) ) |
| 4 | r19.29r | ⊢ ( ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛 ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐽 ( ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛 ) ∧ ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) | |
| 5 | pm3.35 | ⊢ ( ( 𝑃 ∈ 𝑥 ∧ ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) | |
| 6 | ssrin | ⊢ ( 𝑥 ⊆ 𝑛 → ( 𝑥 ∩ 𝑆 ) ⊆ ( 𝑛 ∩ 𝑆 ) ) | |
| 7 | sseq2 | ⊢ ( ( 𝑛 ∩ 𝑆 ) = ∅ → ( ( 𝑥 ∩ 𝑆 ) ⊆ ( 𝑛 ∩ 𝑆 ) ↔ ( 𝑥 ∩ 𝑆 ) ⊆ ∅ ) ) | |
| 8 | ss0 | ⊢ ( ( 𝑥 ∩ 𝑆 ) ⊆ ∅ → ( 𝑥 ∩ 𝑆 ) = ∅ ) | |
| 9 | 7 8 | biimtrdi | ⊢ ( ( 𝑛 ∩ 𝑆 ) = ∅ → ( ( 𝑥 ∩ 𝑆 ) ⊆ ( 𝑛 ∩ 𝑆 ) → ( 𝑥 ∩ 𝑆 ) = ∅ ) ) |
| 10 | 6 9 | syl5com | ⊢ ( 𝑥 ⊆ 𝑛 → ( ( 𝑛 ∩ 𝑆 ) = ∅ → ( 𝑥 ∩ 𝑆 ) = ∅ ) ) |
| 11 | 10 | necon3d | ⊢ ( 𝑥 ⊆ 𝑛 → ( ( 𝑥 ∩ 𝑆 ) ≠ ∅ → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) |
| 12 | 5 11 | syl5com | ⊢ ( ( 𝑃 ∈ 𝑥 ∧ ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) → ( 𝑥 ⊆ 𝑛 → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) |
| 13 | 12 | ex | ⊢ ( 𝑃 ∈ 𝑥 → ( ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑥 ⊆ 𝑛 → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 14 | 13 | com23 | ⊢ ( 𝑃 ∈ 𝑥 → ( 𝑥 ⊆ 𝑛 → ( ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 15 | 14 | imp31 | ⊢ ( ( ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛 ) ∧ ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) |
| 16 | 15 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐽 ( ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛 ) ∧ ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) |
| 17 | 4 16 | syl | ⊢ ( ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛 ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) |
| 18 | 17 | ex | ⊢ ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛 ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝑛 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛 ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) |
| 20 | 3 19 | biimtrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 21 | 20 | 3adant2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 22 | 21 | com23 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 23 | 22 | imp | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) |
| 24 | 23 | ralrimiv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) → ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) |
| 25 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥 ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) | |
| 26 | ineq1 | ⊢ ( 𝑛 = 𝑥 → ( 𝑛 ∩ 𝑆 ) = ( 𝑥 ∩ 𝑆 ) ) | |
| 27 | 26 | neeq1d | ⊢ ( 𝑛 = 𝑥 → ( ( 𝑛 ∩ 𝑆 ) ≠ ∅ ↔ ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) |
| 28 | 27 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) |
| 29 | idd | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑥 ∩ 𝑆 ) ≠ ∅ → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) | |
| 30 | 29 | 3exp | ⊢ ( 𝑃 ∈ 𝑋 → ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥 ) → ( 𝑆 ⊆ 𝑋 → ( ( 𝑥 ∩ 𝑆 ) ≠ ∅ → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 31 | 30 | com14 | ⊢ ( ( 𝑥 ∩ 𝑆 ) ≠ ∅ → ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥 ) → ( 𝑆 ⊆ 𝑋 → ( 𝑃 ∈ 𝑋 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 32 | 28 31 | syl | ⊢ ( ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥 ) → ( 𝑆 ⊆ 𝑋 → ( 𝑃 ∈ 𝑋 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 33 | 32 | ex | ⊢ ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ → ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) → ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥 ) → ( 𝑆 ⊆ 𝑋 → ( 𝑃 ∈ 𝑋 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) ) |
| 34 | 33 | com3l | ⊢ ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) → ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ → ( 𝑆 ⊆ 𝑋 → ( 𝑃 ∈ 𝑋 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) ) |
| 35 | 25 34 | mpcom | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ → ( 𝑆 ⊆ 𝑋 → ( 𝑃 ∈ 𝑋 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 36 | 35 | 3expia | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( 𝑃 ∈ 𝑥 → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ → ( 𝑆 ⊆ 𝑋 → ( 𝑃 ∈ 𝑋 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) ) |
| 37 | 36 | com25 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( 𝑃 ∈ 𝑋 → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ → ( 𝑆 ⊆ 𝑋 → ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) ) |
| 38 | 37 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝐽 → ( 𝑃 ∈ 𝑋 → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ → ( 𝑆 ⊆ 𝑋 → ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) ) ) |
| 39 | 38 | com25 | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ 𝑋 → ( 𝑃 ∈ 𝑋 → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ → ( 𝑥 ∈ 𝐽 → ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) ) ) |
| 40 | 39 | 3imp1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑥 ∈ 𝐽 → ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 41 | 40 | ralrimiv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) → ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) |
| 42 | 24 41 | impbida | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) |
| 43 | 2 42 | bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) |