This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point P belongs to the closure of a set S iff every neighborhood of P meets S . (Contributed by FL, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tpnei.1 | |- X = U. J |
|
| Assertion | neindisj2 | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpnei.1 | |- X = U. J |
|
| 2 | 1 | elcls | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
| 3 | 1 | isneip | |- ( ( J e. Top /\ P e. X ) -> ( n e. ( ( nei ` J ) ` { P } ) <-> ( n C_ X /\ E. x e. J ( P e. x /\ x C_ n ) ) ) ) |
| 4 | r19.29r | |- ( ( E. x e. J ( P e. x /\ x C_ n ) /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) -> E. x e. J ( ( P e. x /\ x C_ n ) /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
|
| 5 | pm3.35 | |- ( ( P e. x /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( x i^i S ) =/= (/) ) |
|
| 6 | ssrin | |- ( x C_ n -> ( x i^i S ) C_ ( n i^i S ) ) |
|
| 7 | sseq2 | |- ( ( n i^i S ) = (/) -> ( ( x i^i S ) C_ ( n i^i S ) <-> ( x i^i S ) C_ (/) ) ) |
|
| 8 | ss0 | |- ( ( x i^i S ) C_ (/) -> ( x i^i S ) = (/) ) |
|
| 9 | 7 8 | biimtrdi | |- ( ( n i^i S ) = (/) -> ( ( x i^i S ) C_ ( n i^i S ) -> ( x i^i S ) = (/) ) ) |
| 10 | 6 9 | syl5com | |- ( x C_ n -> ( ( n i^i S ) = (/) -> ( x i^i S ) = (/) ) ) |
| 11 | 10 | necon3d | |- ( x C_ n -> ( ( x i^i S ) =/= (/) -> ( n i^i S ) =/= (/) ) ) |
| 12 | 5 11 | syl5com | |- ( ( P e. x /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( x C_ n -> ( n i^i S ) =/= (/) ) ) |
| 13 | 12 | ex | |- ( P e. x -> ( ( P e. x -> ( x i^i S ) =/= (/) ) -> ( x C_ n -> ( n i^i S ) =/= (/) ) ) ) |
| 14 | 13 | com23 | |- ( P e. x -> ( x C_ n -> ( ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) ) |
| 15 | 14 | imp31 | |- ( ( ( P e. x /\ x C_ n ) /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( n i^i S ) =/= (/) ) |
| 16 | 15 | rexlimivw | |- ( E. x e. J ( ( P e. x /\ x C_ n ) /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( n i^i S ) =/= (/) ) |
| 17 | 4 16 | syl | |- ( ( E. x e. J ( P e. x /\ x C_ n ) /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( n i^i S ) =/= (/) ) |
| 18 | 17 | ex | |- ( E. x e. J ( P e. x /\ x C_ n ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) |
| 19 | 18 | adantl | |- ( ( n C_ X /\ E. x e. J ( P e. x /\ x C_ n ) ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) |
| 20 | 3 19 | biimtrdi | |- ( ( J e. Top /\ P e. X ) -> ( n e. ( ( nei ` J ) ` { P } ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) ) |
| 21 | 20 | 3adant2 | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( n e. ( ( nei ` J ) ` { P } ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) ) |
| 22 | 21 | com23 | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n e. ( ( nei ` J ) ` { P } ) -> ( n i^i S ) =/= (/) ) ) ) |
| 23 | 22 | imp | |- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( n e. ( ( nei ` J ) ` { P } ) -> ( n i^i S ) =/= (/) ) ) |
| 24 | 23 | ralrimiv | |- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) -> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) |
| 25 | opnneip | |- ( ( J e. Top /\ x e. J /\ P e. x ) -> x e. ( ( nei ` J ) ` { P } ) ) |
|
| 26 | ineq1 | |- ( n = x -> ( n i^i S ) = ( x i^i S ) ) |
|
| 27 | 26 | neeq1d | |- ( n = x -> ( ( n i^i S ) =/= (/) <-> ( x i^i S ) =/= (/) ) ) |
| 28 | 27 | rspccva | |- ( ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) /\ x e. ( ( nei ` J ) ` { P } ) ) -> ( x i^i S ) =/= (/) ) |
| 29 | idd | |- ( ( P e. X /\ ( J e. Top /\ x e. J /\ P e. x ) /\ S C_ X ) -> ( ( x i^i S ) =/= (/) -> ( x i^i S ) =/= (/) ) ) |
|
| 30 | 29 | 3exp | |- ( P e. X -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( S C_ X -> ( ( x i^i S ) =/= (/) -> ( x i^i S ) =/= (/) ) ) ) ) |
| 31 | 30 | com14 | |- ( ( x i^i S ) =/= (/) -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) |
| 32 | 28 31 | syl | |- ( ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) /\ x e. ( ( nei ` J ) ` { P } ) ) -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) |
| 33 | 32 | ex | |- ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( x e. ( ( nei ` J ) ` { P } ) -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) ) |
| 34 | 33 | com3l | |- ( x e. ( ( nei ` J ) ` { P } ) -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) ) |
| 35 | 25 34 | mpcom | |- ( ( J e. Top /\ x e. J /\ P e. x ) -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) |
| 36 | 35 | 3expia | |- ( ( J e. Top /\ x e. J ) -> ( P e. x -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) ) |
| 37 | 36 | com25 | |- ( ( J e. Top /\ x e. J ) -> ( P e. X -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. x -> ( x i^i S ) =/= (/) ) ) ) ) ) |
| 38 | 37 | ex | |- ( J e. Top -> ( x e. J -> ( P e. X -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. x -> ( x i^i S ) =/= (/) ) ) ) ) ) ) |
| 39 | 38 | com25 | |- ( J e. Top -> ( S C_ X -> ( P e. X -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( x e. J -> ( P e. x -> ( x i^i S ) =/= (/) ) ) ) ) ) ) |
| 40 | 39 | 3imp1 | |- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) -> ( x e. J -> ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
| 41 | 40 | ralrimiv | |- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) -> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) |
| 42 | 24 41 | impbida | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) <-> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) ) |
| 43 | 2 42 | bitrd | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) ) |