This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of the division algorithm. If an integer D greater than 1 divides N , then it does not divide any of N - 1 , N - 2 ... N - ( D - 1 ) . (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ndvdssub | |- ( ( N e. ZZ /\ D e. NN /\ ( K e. NN /\ K < D ) ) -> ( D || N -> -. D || ( N - K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 | |- ( K e. NN -> K e. NN0 ) |
|
| 2 | nnne0 | |- ( K e. NN -> K =/= 0 ) |
|
| 3 | 1 2 | jca | |- ( K e. NN -> ( K e. NN0 /\ K =/= 0 ) ) |
| 4 | df-ne | |- ( K =/= 0 <-> -. K = 0 ) |
|
| 5 | 4 | anbi2i | |- ( ( K < D /\ K =/= 0 ) <-> ( K < D /\ -. K = 0 ) ) |
| 6 | divalg2 | |- ( ( N e. ZZ /\ D e. NN ) -> E! r e. NN0 ( r < D /\ D || ( N - r ) ) ) |
|
| 7 | breq1 | |- ( r = x -> ( r < D <-> x < D ) ) |
|
| 8 | oveq2 | |- ( r = x -> ( N - r ) = ( N - x ) ) |
|
| 9 | 8 | breq2d | |- ( r = x -> ( D || ( N - r ) <-> D || ( N - x ) ) ) |
| 10 | 7 9 | anbi12d | |- ( r = x -> ( ( r < D /\ D || ( N - r ) ) <-> ( x < D /\ D || ( N - x ) ) ) ) |
| 11 | 10 | reu4 | |- ( E! r e. NN0 ( r < D /\ D || ( N - r ) ) <-> ( E. r e. NN0 ( r < D /\ D || ( N - r ) ) /\ A. r e. NN0 A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) ) ) |
| 12 | 6 11 | sylib | |- ( ( N e. ZZ /\ D e. NN ) -> ( E. r e. NN0 ( r < D /\ D || ( N - r ) ) /\ A. r e. NN0 A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) ) ) |
| 13 | nngt0 | |- ( D e. NN -> 0 < D ) |
|
| 14 | 13 | 3ad2ant2 | |- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> 0 < D ) |
| 15 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 16 | 15 | subid1d | |- ( N e. ZZ -> ( N - 0 ) = N ) |
| 17 | 16 | breq2d | |- ( N e. ZZ -> ( D || ( N - 0 ) <-> D || N ) ) |
| 18 | 17 | biimpar | |- ( ( N e. ZZ /\ D || N ) -> D || ( N - 0 ) ) |
| 19 | 18 | 3adant2 | |- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> D || ( N - 0 ) ) |
| 20 | 14 19 | jca | |- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( 0 < D /\ D || ( N - 0 ) ) ) |
| 21 | 20 | 3expa | |- ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> ( 0 < D /\ D || ( N - 0 ) ) ) |
| 22 | 21 | anim1ci | |- ( ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) /\ ( r < D /\ D || ( N - r ) ) ) -> ( ( r < D /\ D || ( N - r ) ) /\ ( 0 < D /\ D || ( N - 0 ) ) ) ) |
| 23 | 0nn0 | |- 0 e. NN0 |
|
| 24 | breq1 | |- ( x = 0 -> ( x < D <-> 0 < D ) ) |
|
| 25 | oveq2 | |- ( x = 0 -> ( N - x ) = ( N - 0 ) ) |
|
| 26 | 25 | breq2d | |- ( x = 0 -> ( D || ( N - x ) <-> D || ( N - 0 ) ) ) |
| 27 | 24 26 | anbi12d | |- ( x = 0 -> ( ( x < D /\ D || ( N - x ) ) <-> ( 0 < D /\ D || ( N - 0 ) ) ) ) |
| 28 | 27 | anbi2d | |- ( x = 0 -> ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) <-> ( ( r < D /\ D || ( N - r ) ) /\ ( 0 < D /\ D || ( N - 0 ) ) ) ) ) |
| 29 | eqeq2 | |- ( x = 0 -> ( r = x <-> r = 0 ) ) |
|
| 30 | 28 29 | imbi12d | |- ( x = 0 -> ( ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) <-> ( ( ( r < D /\ D || ( N - r ) ) /\ ( 0 < D /\ D || ( N - 0 ) ) ) -> r = 0 ) ) ) |
| 31 | 30 | rspcv | |- ( 0 e. NN0 -> ( A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) -> ( ( ( r < D /\ D || ( N - r ) ) /\ ( 0 < D /\ D || ( N - 0 ) ) ) -> r = 0 ) ) ) |
| 32 | 23 31 | ax-mp | |- ( A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) -> ( ( ( r < D /\ D || ( N - r ) ) /\ ( 0 < D /\ D || ( N - 0 ) ) ) -> r = 0 ) ) |
| 33 | 22 32 | syl5 | |- ( A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) -> ( ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) /\ ( r < D /\ D || ( N - r ) ) ) -> r = 0 ) ) |
| 34 | 33 | expd | |- ( A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) -> ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) |
| 35 | 34 | ralimi | |- ( A. r e. NN0 A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) -> A. r e. NN0 ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) |
| 36 | 12 35 | simpl2im | |- ( ( N e. ZZ /\ D e. NN ) -> A. r e. NN0 ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) |
| 37 | r19.21v | |- ( A. r e. NN0 ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) <-> ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> A. r e. NN0 ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) |
|
| 38 | 36 37 | sylib | |- ( ( N e. ZZ /\ D e. NN ) -> ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> A. r e. NN0 ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) |
| 39 | 38 | expd | |- ( ( N e. ZZ /\ D e. NN ) -> ( ( N e. ZZ /\ D e. NN ) -> ( D || N -> A. r e. NN0 ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) ) |
| 40 | 39 | pm2.43i | |- ( ( N e. ZZ /\ D e. NN ) -> ( D || N -> A. r e. NN0 ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) |
| 41 | 40 | 3impia | |- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> A. r e. NN0 ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) |
| 42 | breq1 | |- ( r = K -> ( r < D <-> K < D ) ) |
|
| 43 | oveq2 | |- ( r = K -> ( N - r ) = ( N - K ) ) |
|
| 44 | 43 | breq2d | |- ( r = K -> ( D || ( N - r ) <-> D || ( N - K ) ) ) |
| 45 | 42 44 | anbi12d | |- ( r = K -> ( ( r < D /\ D || ( N - r ) ) <-> ( K < D /\ D || ( N - K ) ) ) ) |
| 46 | eqeq1 | |- ( r = K -> ( r = 0 <-> K = 0 ) ) |
|
| 47 | 45 46 | imbi12d | |- ( r = K -> ( ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) <-> ( ( K < D /\ D || ( N - K ) ) -> K = 0 ) ) ) |
| 48 | 47 | rspcv | |- ( K e. NN0 -> ( A. r e. NN0 ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) -> ( ( K < D /\ D || ( N - K ) ) -> K = 0 ) ) ) |
| 49 | 41 48 | syl5com | |- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K e. NN0 -> ( ( K < D /\ D || ( N - K ) ) -> K = 0 ) ) ) |
| 50 | pm4.14 | |- ( ( ( K < D /\ D || ( N - K ) ) -> K = 0 ) <-> ( ( K < D /\ -. K = 0 ) -> -. D || ( N - K ) ) ) |
|
| 51 | 49 50 | imbitrdi | |- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K e. NN0 -> ( ( K < D /\ -. K = 0 ) -> -. D || ( N - K ) ) ) ) |
| 52 | 5 51 | syl7bi | |- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K e. NN0 -> ( ( K < D /\ K =/= 0 ) -> -. D || ( N - K ) ) ) ) |
| 53 | 52 | exp4a | |- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K e. NN0 -> ( K < D -> ( K =/= 0 -> -. D || ( N - K ) ) ) ) ) |
| 54 | 53 | com23 | |- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K < D -> ( K e. NN0 -> ( K =/= 0 -> -. D || ( N - K ) ) ) ) ) |
| 55 | 54 | imp4a | |- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K < D -> ( ( K e. NN0 /\ K =/= 0 ) -> -. D || ( N - K ) ) ) ) |
| 56 | 3 55 | syl7 | |- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K < D -> ( K e. NN -> -. D || ( N - K ) ) ) ) |
| 57 | 56 | impcomd | |- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( ( K e. NN /\ K < D ) -> -. D || ( N - K ) ) ) |
| 58 | 57 | 3expia | |- ( ( N e. ZZ /\ D e. NN ) -> ( D || N -> ( ( K e. NN /\ K < D ) -> -. D || ( N - K ) ) ) ) |
| 59 | 58 | com23 | |- ( ( N e. ZZ /\ D e. NN ) -> ( ( K e. NN /\ K < D ) -> ( D || N -> -. D || ( N - K ) ) ) ) |
| 60 | 59 | 3impia | |- ( ( N e. ZZ /\ D e. NN /\ ( K e. NN /\ K < D ) ) -> ( D || N -> -. D || ( N - K ) ) ) |