This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divalg2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ∃! 𝑟 ∈ ℕ0 ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℤ ) | |
| 2 | nnne0 | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ≠ 0 ) | |
| 3 | 1 2 | jca | ⊢ ( 𝐷 ∈ ℕ → ( 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ) ) |
| 4 | divalg | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ) → ∃! 𝑟 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑟 ∧ 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) ) | |
| 5 | divalgb | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ) → ( ∃! 𝑟 ∈ ℤ ∃ 𝑞 ∈ ℤ ( 0 ≤ 𝑟 ∧ 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ) ↔ ∃! 𝑟 ∈ ℕ0 ( 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ) ) | |
| 6 | 4 5 | mpbid | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ) → ∃! 𝑟 ∈ ℕ0 ( 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ) |
| 7 | 6 | 3expb | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ) ) → ∃! 𝑟 ∈ ℕ0 ( 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ) |
| 8 | 3 7 | sylan2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ∃! 𝑟 ∈ ℕ0 ( 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ) |
| 9 | nnre | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℝ ) | |
| 10 | nnnn0 | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℕ0 ) | |
| 11 | 10 | nn0ge0d | ⊢ ( 𝐷 ∈ ℕ → 0 ≤ 𝐷 ) |
| 12 | 9 11 | absidd | ⊢ ( 𝐷 ∈ ℕ → ( abs ‘ 𝐷 ) = 𝐷 ) |
| 13 | 12 | breq2d | ⊢ ( 𝐷 ∈ ℕ → ( 𝑟 < ( abs ‘ 𝐷 ) ↔ 𝑟 < 𝐷 ) ) |
| 14 | 13 | anbi1d | ⊢ ( 𝐷 ∈ ℕ → ( ( 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ↔ ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ) ) |
| 15 | 14 | reubidv | ⊢ ( 𝐷 ∈ ℕ → ( ∃! 𝑟 ∈ ℕ0 ( 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ↔ ∃! 𝑟 ∈ ℕ0 ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( ∃! 𝑟 ∈ ℕ0 ( 𝑟 < ( abs ‘ 𝐷 ) ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ↔ ∃! 𝑟 ∈ ℕ0 ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ) ) |
| 17 | 8 16 | mpbid | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ∃! 𝑟 ∈ ℕ0 ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ) |