This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping of neighbors of a vertex to edges incident to the vertex is a bijection ( 1-1 onto function) in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017) (Revised by AV, 28-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbusgrf1o1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbusgrf1o1.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| nbusgrf1o1.n | ⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑈 ) | ||
| nbusgrf1o1.i | ⊢ 𝐼 = { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } | ||
| nbusgrf1o.f | ⊢ 𝐹 = ( 𝑛 ∈ 𝑁 ↦ { 𝑈 , 𝑛 } ) | ||
| Assertion | nbusgrf1o0 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → 𝐹 : 𝑁 –1-1-onto→ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbusgrf1o1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbusgrf1o1.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | nbusgrf1o1.n | ⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑈 ) | |
| 4 | nbusgrf1o1.i | ⊢ 𝐼 = { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } | |
| 5 | nbusgrf1o.f | ⊢ 𝐹 = ( 𝑛 ∈ 𝑁 ↦ { 𝑈 , 𝑛 } ) | |
| 6 | 3 | eleq2i | ⊢ ( 𝑛 ∈ 𝑁 ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) |
| 7 | 2 | nbusgreledg | ⊢ ( 𝐺 ∈ USGraph → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑈 ) ↔ { 𝑛 , 𝑈 } ∈ 𝐸 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑈 ) ↔ { 𝑛 , 𝑈 } ∈ 𝐸 ) ) |
| 9 | prcom | ⊢ { 𝑛 , 𝑈 } = { 𝑈 , 𝑛 } | |
| 10 | 9 | eleq1i | ⊢ ( { 𝑛 , 𝑈 } ∈ 𝐸 ↔ { 𝑈 , 𝑛 } ∈ 𝐸 ) |
| 11 | 10 | biimpi | ⊢ ( { 𝑛 , 𝑈 } ∈ 𝐸 → { 𝑈 , 𝑛 } ∈ 𝐸 ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ { 𝑛 , 𝑈 } ∈ 𝐸 ) → { 𝑈 , 𝑛 } ∈ 𝐸 ) |
| 13 | prid1g | ⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ { 𝑈 , 𝑛 } ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → 𝑈 ∈ { 𝑈 , 𝑛 } ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ { 𝑛 , 𝑈 } ∈ 𝐸 ) → 𝑈 ∈ { 𝑈 , 𝑛 } ) |
| 16 | eleq2 | ⊢ ( 𝑒 = { 𝑈 , 𝑛 } → ( 𝑈 ∈ 𝑒 ↔ 𝑈 ∈ { 𝑈 , 𝑛 } ) ) | |
| 17 | 16 4 | elrab2 | ⊢ ( { 𝑈 , 𝑛 } ∈ 𝐼 ↔ ( { 𝑈 , 𝑛 } ∈ 𝐸 ∧ 𝑈 ∈ { 𝑈 , 𝑛 } ) ) |
| 18 | 12 15 17 | sylanbrc | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ { 𝑛 , 𝑈 } ∈ 𝐸 ) → { 𝑈 , 𝑛 } ∈ 𝐼 ) |
| 19 | 18 | ex | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( { 𝑛 , 𝑈 } ∈ 𝐸 → { 𝑈 , 𝑛 } ∈ 𝐼 ) ) |
| 20 | 8 19 | sylbid | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑈 ) → { 𝑈 , 𝑛 } ∈ 𝐼 ) ) |
| 21 | 6 20 | biimtrid | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑛 ∈ 𝑁 → { 𝑈 , 𝑛 } ∈ 𝐼 ) ) |
| 22 | 21 | ralrimiv | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ∀ 𝑛 ∈ 𝑁 { 𝑈 , 𝑛 } ∈ 𝐼 ) |
| 23 | 4 | reqabi | ⊢ ( 𝑒 ∈ 𝐼 ↔ ( 𝑒 ∈ 𝐸 ∧ 𝑈 ∈ 𝑒 ) ) |
| 24 | 2 3 | edgnbusgreu | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑒 ∈ 𝐸 ∧ 𝑈 ∈ 𝑒 ) ) → ∃! 𝑛 ∈ 𝑁 𝑒 = { 𝑈 , 𝑛 } ) |
| 25 | 23 24 | sylan2b | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐼 ) → ∃! 𝑛 ∈ 𝑁 𝑒 = { 𝑈 , 𝑛 } ) |
| 26 | 25 | ralrimiva | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ∀ 𝑒 ∈ 𝐼 ∃! 𝑛 ∈ 𝑁 𝑒 = { 𝑈 , 𝑛 } ) |
| 27 | 5 | f1ompt | ⊢ ( 𝐹 : 𝑁 –1-1-onto→ 𝐼 ↔ ( ∀ 𝑛 ∈ 𝑁 { 𝑈 , 𝑛 } ∈ 𝐼 ∧ ∀ 𝑒 ∈ 𝐼 ∃! 𝑛 ∈ 𝑁 𝑒 = { 𝑈 , 𝑛 } ) ) |
| 28 | 22 26 27 | sylanbrc | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → 𝐹 : 𝑁 –1-1-onto→ 𝐼 ) |