This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping of neighbors of a vertex to edges incident to the vertex is a bijection ( 1-1 onto function) in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017) (Revised by AV, 28-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbusgrf1o1.v | |- V = ( Vtx ` G ) |
|
| nbusgrf1o1.e | |- E = ( Edg ` G ) |
||
| nbusgrf1o1.n | |- N = ( G NeighbVtx U ) |
||
| nbusgrf1o1.i | |- I = { e e. E | U e. e } |
||
| nbusgrf1o.f | |- F = ( n e. N |-> { U , n } ) |
||
| Assertion | nbusgrf1o0 | |- ( ( G e. USGraph /\ U e. V ) -> F : N -1-1-onto-> I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbusgrf1o1.v | |- V = ( Vtx ` G ) |
|
| 2 | nbusgrf1o1.e | |- E = ( Edg ` G ) |
|
| 3 | nbusgrf1o1.n | |- N = ( G NeighbVtx U ) |
|
| 4 | nbusgrf1o1.i | |- I = { e e. E | U e. e } |
|
| 5 | nbusgrf1o.f | |- F = ( n e. N |-> { U , n } ) |
|
| 6 | 3 | eleq2i | |- ( n e. N <-> n e. ( G NeighbVtx U ) ) |
| 7 | 2 | nbusgreledg | |- ( G e. USGraph -> ( n e. ( G NeighbVtx U ) <-> { n , U } e. E ) ) |
| 8 | 7 | adantr | |- ( ( G e. USGraph /\ U e. V ) -> ( n e. ( G NeighbVtx U ) <-> { n , U } e. E ) ) |
| 9 | prcom | |- { n , U } = { U , n } |
|
| 10 | 9 | eleq1i | |- ( { n , U } e. E <-> { U , n } e. E ) |
| 11 | 10 | biimpi | |- ( { n , U } e. E -> { U , n } e. E ) |
| 12 | 11 | adantl | |- ( ( ( G e. USGraph /\ U e. V ) /\ { n , U } e. E ) -> { U , n } e. E ) |
| 13 | prid1g | |- ( U e. V -> U e. { U , n } ) |
|
| 14 | 13 | adantl | |- ( ( G e. USGraph /\ U e. V ) -> U e. { U , n } ) |
| 15 | 14 | adantr | |- ( ( ( G e. USGraph /\ U e. V ) /\ { n , U } e. E ) -> U e. { U , n } ) |
| 16 | eleq2 | |- ( e = { U , n } -> ( U e. e <-> U e. { U , n } ) ) |
|
| 17 | 16 4 | elrab2 | |- ( { U , n } e. I <-> ( { U , n } e. E /\ U e. { U , n } ) ) |
| 18 | 12 15 17 | sylanbrc | |- ( ( ( G e. USGraph /\ U e. V ) /\ { n , U } e. E ) -> { U , n } e. I ) |
| 19 | 18 | ex | |- ( ( G e. USGraph /\ U e. V ) -> ( { n , U } e. E -> { U , n } e. I ) ) |
| 20 | 8 19 | sylbid | |- ( ( G e. USGraph /\ U e. V ) -> ( n e. ( G NeighbVtx U ) -> { U , n } e. I ) ) |
| 21 | 6 20 | biimtrid | |- ( ( G e. USGraph /\ U e. V ) -> ( n e. N -> { U , n } e. I ) ) |
| 22 | 21 | ralrimiv | |- ( ( G e. USGraph /\ U e. V ) -> A. n e. N { U , n } e. I ) |
| 23 | 4 | reqabi | |- ( e e. I <-> ( e e. E /\ U e. e ) ) |
| 24 | 2 3 | edgnbusgreu | |- ( ( ( G e. USGraph /\ U e. V ) /\ ( e e. E /\ U e. e ) ) -> E! n e. N e = { U , n } ) |
| 25 | 23 24 | sylan2b | |- ( ( ( G e. USGraph /\ U e. V ) /\ e e. I ) -> E! n e. N e = { U , n } ) |
| 26 | 25 | ralrimiva | |- ( ( G e. USGraph /\ U e. V ) -> A. e e. I E! n e. N e = { U , n } ) |
| 27 | 5 | f1ompt | |- ( F : N -1-1-onto-> I <-> ( A. n e. N { U , n } e. I /\ A. e e. I E! n e. N e = { U , n } ) ) |
| 28 | 22 26 27 | sylanbrc | |- ( ( G e. USGraph /\ U e. V ) -> F : N -1-1-onto-> I ) |