This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each edge incident to a vertex there is exactly one neighbor of the vertex also incident to this edge in a simple graph. (Contributed by AV, 28-Oct-2020) (Revised by AV, 6-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | edgnbusgreu.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| edgnbusgreu.n | ⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑀 ) | ||
| Assertion | edgnbusgreu | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ∃! 𝑛 ∈ 𝑁 𝐶 = { 𝑀 , 𝑛 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgnbusgreu.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | edgnbusgreu.n | ⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑀 ) | |
| 3 | simpll | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → 𝐺 ∈ USGraph ) | |
| 4 | 1 | eleq2i | ⊢ ( 𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) |
| 5 | 4 | biimpi | ⊢ ( 𝐶 ∈ 𝐸 → 𝐶 ∈ ( Edg ‘ 𝐺 ) ) |
| 6 | 5 | ad2antrl | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → 𝐶 ∈ ( Edg ‘ 𝐺 ) ) |
| 7 | simprr | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → 𝑀 ∈ 𝐶 ) | |
| 8 | usgredg2vtxeu | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑀 ∈ 𝐶 ) → ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝐶 = { 𝑀 , 𝑛 } ) | |
| 9 | 3 6 7 8 | syl3anc | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝐶 = { 𝑀 , 𝑛 } ) |
| 10 | df-reu | ⊢ ( ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝐶 = { 𝑀 , 𝑛 } ↔ ∃! 𝑛 ( 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) | |
| 11 | prcom | ⊢ { 𝑀 , 𝑛 } = { 𝑛 , 𝑀 } | |
| 12 | 11 | eqeq2i | ⊢ ( 𝐶 = { 𝑀 , 𝑛 } ↔ 𝐶 = { 𝑛 , 𝑀 } ) |
| 13 | 12 | biimpi | ⊢ ( 𝐶 = { 𝑀 , 𝑛 } → 𝐶 = { 𝑛 , 𝑀 } ) |
| 14 | 13 | eleq1d | ⊢ ( 𝐶 = { 𝑀 , 𝑛 } → ( 𝐶 ∈ 𝐸 ↔ { 𝑛 , 𝑀 } ∈ 𝐸 ) ) |
| 15 | 14 | biimpcd | ⊢ ( 𝐶 ∈ 𝐸 → ( 𝐶 = { 𝑀 , 𝑛 } → { 𝑛 , 𝑀 } ∈ 𝐸 ) ) |
| 16 | 15 | ad2antrl | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ( 𝐶 = { 𝑀 , 𝑛 } → { 𝑛 , 𝑀 } ∈ 𝐸 ) ) |
| 17 | 16 | adantld | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ( ( 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 = { 𝑀 , 𝑛 } ) → { 𝑛 , 𝑀 } ∈ 𝐸 ) ) |
| 18 | 17 | imp | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) ∧ ( 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) → { 𝑛 , 𝑀 } ∈ 𝐸 ) |
| 19 | simprr | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) ∧ ( 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) → 𝐶 = { 𝑀 , 𝑛 } ) | |
| 20 | 18 19 | jca | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) ∧ ( 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) → ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) |
| 21 | simpl | ⊢ ( ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) → { 𝑛 , 𝑀 } ∈ 𝐸 ) | |
| 22 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 23 | 1 22 | usgrpredgv | ⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝑛 , 𝑀 } ∈ 𝐸 ) → ( 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑀 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 24 | 23 | simpld | ⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝑛 , 𝑀 } ∈ 𝐸 ) → 𝑛 ∈ ( Vtx ‘ 𝐺 ) ) |
| 25 | 3 21 24 | syl2an | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) ∧ ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) → 𝑛 ∈ ( Vtx ‘ 𝐺 ) ) |
| 26 | simprr | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) ∧ ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) → 𝐶 = { 𝑀 , 𝑛 } ) | |
| 27 | 25 26 | jca | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) ∧ ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) → ( 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) |
| 28 | 20 27 | impbida | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ( ( 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 = { 𝑀 , 𝑛 } ) ↔ ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) ) |
| 29 | 28 | eubidv | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ( ∃! 𝑛 ( 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 = { 𝑀 , 𝑛 } ) ↔ ∃! 𝑛 ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) ) |
| 30 | 29 | biimpd | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ( ∃! 𝑛 ( 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 = { 𝑀 , 𝑛 } ) → ∃! 𝑛 ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) ) |
| 31 | 10 30 | biimtrid | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ( ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝐶 = { 𝑀 , 𝑛 } → ∃! 𝑛 ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) ) |
| 32 | 9 31 | mpd | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ∃! 𝑛 ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) |
| 33 | 2 | eleq2i | ⊢ ( 𝑛 ∈ 𝑁 ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑀 ) ) |
| 34 | 1 | nbusgreledg | ⊢ ( 𝐺 ∈ USGraph → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑀 ) ↔ { 𝑛 , 𝑀 } ∈ 𝐸 ) ) |
| 35 | 33 34 | bitrid | ⊢ ( 𝐺 ∈ USGraph → ( 𝑛 ∈ 𝑁 ↔ { 𝑛 , 𝑀 } ∈ 𝐸 ) ) |
| 36 | 35 | anbi1d | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝑛 ∈ 𝑁 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ↔ ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) ) |
| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ( ( 𝑛 ∈ 𝑁 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ↔ ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) ) |
| 38 | 37 | eubidv | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ( ∃! 𝑛 ( 𝑛 ∈ 𝑁 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ↔ ∃! 𝑛 ( { 𝑛 , 𝑀 } ∈ 𝐸 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) ) |
| 39 | 32 38 | mpbird | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ∃! 𝑛 ( 𝑛 ∈ 𝑁 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) |
| 40 | df-reu | ⊢ ( ∃! 𝑛 ∈ 𝑁 𝐶 = { 𝑀 , 𝑛 } ↔ ∃! 𝑛 ( 𝑛 ∈ 𝑁 ∧ 𝐶 = { 𝑀 , 𝑛 } ) ) | |
| 41 | 39 40 | sylibr | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝐸 ∧ 𝑀 ∈ 𝐶 ) ) → ∃! 𝑛 ∈ 𝑁 𝐶 = { 𝑀 , 𝑛 } ) |