This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of neighbors of a vertex is isomorphic to the set of edges containing the vertex in a simple graph. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 28-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbusgrf1o1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbusgrf1o1.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| nbusgrf1o1.n | ⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑈 ) | ||
| nbusgrf1o1.i | ⊢ 𝐼 = { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } | ||
| Assertion | nbusgrf1o1 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ∃ 𝑓 𝑓 : 𝑁 –1-1-onto→ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbusgrf1o1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbusgrf1o1.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | nbusgrf1o1.n | ⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑈 ) | |
| 4 | nbusgrf1o1.i | ⊢ 𝐼 = { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } | |
| 5 | 3 | ovexi | ⊢ 𝑁 ∈ V |
| 6 | mptexg | ⊢ ( 𝑁 ∈ V → ( 𝑛 ∈ 𝑁 ↦ { 𝑈 , 𝑛 } ) ∈ V ) | |
| 7 | 5 6 | mp1i | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑛 ∈ 𝑁 ↦ { 𝑈 , 𝑛 } ) ∈ V ) |
| 8 | eqid | ⊢ ( 𝑛 ∈ 𝑁 ↦ { 𝑈 , 𝑛 } ) = ( 𝑛 ∈ 𝑁 ↦ { 𝑈 , 𝑛 } ) | |
| 9 | 1 2 3 4 8 | nbusgrf1o0 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑛 ∈ 𝑁 ↦ { 𝑈 , 𝑛 } ) : 𝑁 –1-1-onto→ 𝐼 ) |
| 10 | f1oeq1 | ⊢ ( 𝑓 = ( 𝑛 ∈ 𝑁 ↦ { 𝑈 , 𝑛 } ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝐼 ↔ ( 𝑛 ∈ 𝑁 ↦ { 𝑈 , 𝑛 } ) : 𝑁 –1-1-onto→ 𝐼 ) ) | |
| 11 | 7 9 10 | spcedv | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ∃ 𝑓 𝑓 : 𝑁 –1-1-onto→ 𝐼 ) |