This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural transformation is natural between opposite functors, and vice versa. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natoppf.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| natoppf.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| natoppf.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | ||
| natoppf.m | ⊢ 𝑀 = ( 𝑂 Nat 𝑃 ) | ||
| natoppfb.k | ⊢ ( 𝜑 → 𝐾 = ( oppFunc ‘ 𝐹 ) ) | ||
| natoppfb.l | ⊢ ( 𝜑 → 𝐿 = ( oppFunc ‘ 𝐺 ) ) | ||
| natoppfb.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| natoppfb.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| Assertion | natoppfb | ⊢ ( 𝜑 → ( 𝐹 𝑁 𝐺 ) = ( 𝐿 𝑀 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natoppf.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | natoppf.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | natoppf.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 4 | natoppf.m | ⊢ 𝑀 = ( 𝑂 Nat 𝑃 ) | |
| 5 | natoppfb.k | ⊢ ( 𝜑 → 𝐾 = ( oppFunc ‘ 𝐹 ) ) | |
| 6 | natoppfb.l | ⊢ ( 𝜑 → 𝐿 = ( oppFunc ‘ 𝐺 ) ) | |
| 7 | natoppfb.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 8 | natoppfb.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 9 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ) → 𝐾 = ( oppFunc ‘ 𝐹 ) ) |
| 10 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ) → 𝐿 = ( oppFunc ‘ 𝐺 ) ) |
| 11 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ) → 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ) | |
| 12 | 1 2 3 4 9 10 11 | natoppf2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ) → 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) |
| 13 | eqid | ⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) | |
| 14 | eqid | ⊢ ( oppCat ‘ 𝑃 ) = ( oppCat ‘ 𝑃 ) | |
| 15 | eqid | ⊢ ( ( oppCat ‘ 𝑂 ) Nat ( oppCat ‘ 𝑃 ) ) = ( ( oppCat ‘ 𝑂 ) Nat ( oppCat ‘ 𝑃 ) ) | |
| 16 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐿 = ( oppFunc ‘ 𝐺 ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppFunc ‘ 𝐿 ) = ( oppFunc ‘ ( oppFunc ‘ 𝐺 ) ) ) |
| 18 | 4 | natrcl | ⊢ ( 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) → ( 𝐿 ∈ ( 𝑂 Func 𝑃 ) ∧ 𝐾 ∈ ( 𝑂 Func 𝑃 ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( 𝐿 ∈ ( 𝑂 Func 𝑃 ) ∧ 𝐾 ∈ ( 𝑂 Func 𝑃 ) ) ) |
| 20 | 19 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐿 ∈ ( 𝑂 Func 𝑃 ) ) |
| 21 | 16 20 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppFunc ‘ 𝐺 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 22 | relfunc | ⊢ Rel ( 𝑂 Func 𝑃 ) | |
| 23 | eqid | ⊢ ( oppFunc ‘ 𝐺 ) = ( oppFunc ‘ 𝐺 ) | |
| 24 | 21 22 23 | 2oppf | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppFunc ‘ ( oppFunc ‘ 𝐺 ) ) = 𝐺 ) |
| 25 | 17 24 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐺 = ( oppFunc ‘ 𝐿 ) ) |
| 26 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐾 = ( oppFunc ‘ 𝐹 ) ) |
| 27 | 26 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppFunc ‘ 𝐾 ) = ( oppFunc ‘ ( oppFunc ‘ 𝐹 ) ) ) |
| 28 | 19 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐾 ∈ ( 𝑂 Func 𝑃 ) ) |
| 29 | 26 28 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 30 | eqid | ⊢ ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ 𝐹 ) | |
| 31 | 29 22 30 | 2oppf | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppFunc ‘ ( oppFunc ‘ 𝐹 ) ) = 𝐹 ) |
| 32 | 27 31 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐹 = ( oppFunc ‘ 𝐾 ) ) |
| 33 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) | |
| 34 | 13 14 4 15 25 32 33 | natoppf2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝑥 ∈ ( 𝐹 ( ( oppCat ‘ 𝑂 ) Nat ( oppCat ‘ 𝑃 ) ) 𝐺 ) ) |
| 35 | 1 | 2oppchomf | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| 36 | 35 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 37 | 1 | 2oppccomf | ⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |
| 38 | 37 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 39 | 2 | 2oppchomf | ⊢ ( Homf ‘ 𝐷 ) = ( Homf ‘ ( oppCat ‘ 𝑃 ) ) |
| 40 | 39 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( Homf ‘ 𝐷 ) = ( Homf ‘ ( oppCat ‘ 𝑃 ) ) ) |
| 41 | 2 | 2oppccomf | ⊢ ( compf ‘ 𝐷 ) = ( compf ‘ ( oppCat ‘ 𝑃 ) ) |
| 42 | 41 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( compf ‘ 𝐷 ) = ( compf ‘ ( oppCat ‘ 𝑃 ) ) ) |
| 43 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐶 ∈ 𝑉 ) |
| 44 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐷 ∈ 𝑊 ) |
| 45 | 1 2 43 44 29 | funcoppc5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 46 | 45 | func1st2nd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 47 | 46 | funcrcl2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐶 ∈ Cat ) |
| 48 | 1 | oppccat | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 49 | 13 | oppccat | ⊢ ( 𝑂 ∈ Cat → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
| 50 | 47 48 49 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
| 51 | 46 | funcrcl3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐷 ∈ Cat ) |
| 52 | 2 | oppccat | ⊢ ( 𝐷 ∈ Cat → 𝑃 ∈ Cat ) |
| 53 | 14 | oppccat | ⊢ ( 𝑃 ∈ Cat → ( oppCat ‘ 𝑃 ) ∈ Cat ) |
| 54 | 51 52 53 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppCat ‘ 𝑃 ) ∈ Cat ) |
| 55 | 36 38 40 42 47 50 51 54 | natpropd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( 𝐶 Nat 𝐷 ) = ( ( oppCat ‘ 𝑂 ) Nat ( oppCat ‘ 𝑃 ) ) ) |
| 56 | 3 55 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝑁 = ( ( oppCat ‘ 𝑂 ) Nat ( oppCat ‘ 𝑃 ) ) ) |
| 57 | 56 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( 𝐹 𝑁 𝐺 ) = ( 𝐹 ( ( oppCat ‘ 𝑂 ) Nat ( oppCat ‘ 𝑃 ) ) 𝐺 ) ) |
| 58 | 34 57 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ) |
| 59 | 12 58 | impbida | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ↔ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) ) |
| 60 | 59 | eqrdv | ⊢ ( 𝜑 → ( 𝐹 𝑁 𝐺 ) = ( 𝐿 𝑀 𝐾 ) ) |