This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| funcoppc2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| funcoppc2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| funcoppc2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| funcoppc5.f | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Func 𝑃 ) ) | ||
| Assertion | funcoppc5 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | funcoppc2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | funcoppc2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | funcoppc2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 5 | funcoppc5.f | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Func 𝑃 ) ) | |
| 6 | relfunc | ⊢ Rel ( 𝑂 Func 𝑃 ) | |
| 7 | eqid | ⊢ ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ 𝐹 ) | |
| 8 | 5 6 7 | oppfrcl | ⊢ ( 𝜑 → 𝐹 ∈ ( V × V ) ) |
| 9 | 1st2nd2 | ⊢ ( 𝐹 ∈ ( V × V ) → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 11 | 10 | fveq2d | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) ) |
| 12 | df-ov | ⊢ ( ( 1st ‘ 𝐹 ) oppFunc ( 2nd ‘ 𝐹 ) ) = ( oppFunc ‘ 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) | |
| 13 | 11 12 | eqtr4di | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( ( 1st ‘ 𝐹 ) oppFunc ( 2nd ‘ 𝐹 ) ) ) |
| 14 | 13 5 | eqeltrrd | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐹 ) oppFunc ( 2nd ‘ 𝐹 ) ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 15 | 1 2 3 4 14 | funcoppc4 | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 16 | df-br | ⊢ ( ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ↔ 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 17 | 15 16 | sylib | ⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 18 | 10 17 | eqeltrd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |