This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural transformation is natural between opposite functors, and vice versa. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natoppf.o | |- O = ( oppCat ` C ) |
|
| natoppf.p | |- P = ( oppCat ` D ) |
||
| natoppf.n | |- N = ( C Nat D ) |
||
| natoppf.m | |- M = ( O Nat P ) |
||
| natoppfb.k | |- ( ph -> K = ( oppFunc ` F ) ) |
||
| natoppfb.l | |- ( ph -> L = ( oppFunc ` G ) ) |
||
| natoppfb.c | |- ( ph -> C e. V ) |
||
| natoppfb.d | |- ( ph -> D e. W ) |
||
| Assertion | natoppfb | |- ( ph -> ( F N G ) = ( L M K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natoppf.o | |- O = ( oppCat ` C ) |
|
| 2 | natoppf.p | |- P = ( oppCat ` D ) |
|
| 3 | natoppf.n | |- N = ( C Nat D ) |
|
| 4 | natoppf.m | |- M = ( O Nat P ) |
|
| 5 | natoppfb.k | |- ( ph -> K = ( oppFunc ` F ) ) |
|
| 6 | natoppfb.l | |- ( ph -> L = ( oppFunc ` G ) ) |
|
| 7 | natoppfb.c | |- ( ph -> C e. V ) |
|
| 8 | natoppfb.d | |- ( ph -> D e. W ) |
|
| 9 | 5 | adantr | |- ( ( ph /\ x e. ( F N G ) ) -> K = ( oppFunc ` F ) ) |
| 10 | 6 | adantr | |- ( ( ph /\ x e. ( F N G ) ) -> L = ( oppFunc ` G ) ) |
| 11 | simpr | |- ( ( ph /\ x e. ( F N G ) ) -> x e. ( F N G ) ) |
|
| 12 | 1 2 3 4 9 10 11 | natoppf2 | |- ( ( ph /\ x e. ( F N G ) ) -> x e. ( L M K ) ) |
| 13 | eqid | |- ( oppCat ` O ) = ( oppCat ` O ) |
|
| 14 | eqid | |- ( oppCat ` P ) = ( oppCat ` P ) |
|
| 15 | eqid | |- ( ( oppCat ` O ) Nat ( oppCat ` P ) ) = ( ( oppCat ` O ) Nat ( oppCat ` P ) ) |
|
| 16 | 6 | adantr | |- ( ( ph /\ x e. ( L M K ) ) -> L = ( oppFunc ` G ) ) |
| 17 | 16 | fveq2d | |- ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` L ) = ( oppFunc ` ( oppFunc ` G ) ) ) |
| 18 | 4 | natrcl | |- ( x e. ( L M K ) -> ( L e. ( O Func P ) /\ K e. ( O Func P ) ) ) |
| 19 | 18 | adantl | |- ( ( ph /\ x e. ( L M K ) ) -> ( L e. ( O Func P ) /\ K e. ( O Func P ) ) ) |
| 20 | 19 | simpld | |- ( ( ph /\ x e. ( L M K ) ) -> L e. ( O Func P ) ) |
| 21 | 16 20 | eqeltrrd | |- ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` G ) e. ( O Func P ) ) |
| 22 | relfunc | |- Rel ( O Func P ) |
|
| 23 | eqid | |- ( oppFunc ` G ) = ( oppFunc ` G ) |
|
| 24 | 21 22 23 | 2oppf | |- ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` ( oppFunc ` G ) ) = G ) |
| 25 | 17 24 | eqtr2d | |- ( ( ph /\ x e. ( L M K ) ) -> G = ( oppFunc ` L ) ) |
| 26 | 5 | adantr | |- ( ( ph /\ x e. ( L M K ) ) -> K = ( oppFunc ` F ) ) |
| 27 | 26 | fveq2d | |- ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` K ) = ( oppFunc ` ( oppFunc ` F ) ) ) |
| 28 | 19 | simprd | |- ( ( ph /\ x e. ( L M K ) ) -> K e. ( O Func P ) ) |
| 29 | 26 28 | eqeltrrd | |- ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` F ) e. ( O Func P ) ) |
| 30 | eqid | |- ( oppFunc ` F ) = ( oppFunc ` F ) |
|
| 31 | 29 22 30 | 2oppf | |- ( ( ph /\ x e. ( L M K ) ) -> ( oppFunc ` ( oppFunc ` F ) ) = F ) |
| 32 | 27 31 | eqtr2d | |- ( ( ph /\ x e. ( L M K ) ) -> F = ( oppFunc ` K ) ) |
| 33 | simpr | |- ( ( ph /\ x e. ( L M K ) ) -> x e. ( L M K ) ) |
|
| 34 | 13 14 4 15 25 32 33 | natoppf2 | |- ( ( ph /\ x e. ( L M K ) ) -> x e. ( F ( ( oppCat ` O ) Nat ( oppCat ` P ) ) G ) ) |
| 35 | 1 | 2oppchomf | |- ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |
| 36 | 35 | a1i | |- ( ( ph /\ x e. ( L M K ) ) -> ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) ) |
| 37 | 1 | 2oppccomf | |- ( comf ` C ) = ( comf ` ( oppCat ` O ) ) |
| 38 | 37 | a1i | |- ( ( ph /\ x e. ( L M K ) ) -> ( comf ` C ) = ( comf ` ( oppCat ` O ) ) ) |
| 39 | 2 | 2oppchomf | |- ( Homf ` D ) = ( Homf ` ( oppCat ` P ) ) |
| 40 | 39 | a1i | |- ( ( ph /\ x e. ( L M K ) ) -> ( Homf ` D ) = ( Homf ` ( oppCat ` P ) ) ) |
| 41 | 2 | 2oppccomf | |- ( comf ` D ) = ( comf ` ( oppCat ` P ) ) |
| 42 | 41 | a1i | |- ( ( ph /\ x e. ( L M K ) ) -> ( comf ` D ) = ( comf ` ( oppCat ` P ) ) ) |
| 43 | 7 | adantr | |- ( ( ph /\ x e. ( L M K ) ) -> C e. V ) |
| 44 | 8 | adantr | |- ( ( ph /\ x e. ( L M K ) ) -> D e. W ) |
| 45 | 1 2 43 44 29 | funcoppc5 | |- ( ( ph /\ x e. ( L M K ) ) -> F e. ( C Func D ) ) |
| 46 | 45 | func1st2nd | |- ( ( ph /\ x e. ( L M K ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 47 | 46 | funcrcl2 | |- ( ( ph /\ x e. ( L M K ) ) -> C e. Cat ) |
| 48 | 1 | oppccat | |- ( C e. Cat -> O e. Cat ) |
| 49 | 13 | oppccat | |- ( O e. Cat -> ( oppCat ` O ) e. Cat ) |
| 50 | 47 48 49 | 3syl | |- ( ( ph /\ x e. ( L M K ) ) -> ( oppCat ` O ) e. Cat ) |
| 51 | 46 | funcrcl3 | |- ( ( ph /\ x e. ( L M K ) ) -> D e. Cat ) |
| 52 | 2 | oppccat | |- ( D e. Cat -> P e. Cat ) |
| 53 | 14 | oppccat | |- ( P e. Cat -> ( oppCat ` P ) e. Cat ) |
| 54 | 51 52 53 | 3syl | |- ( ( ph /\ x e. ( L M K ) ) -> ( oppCat ` P ) e. Cat ) |
| 55 | 36 38 40 42 47 50 51 54 | natpropd | |- ( ( ph /\ x e. ( L M K ) ) -> ( C Nat D ) = ( ( oppCat ` O ) Nat ( oppCat ` P ) ) ) |
| 56 | 3 55 | eqtrid | |- ( ( ph /\ x e. ( L M K ) ) -> N = ( ( oppCat ` O ) Nat ( oppCat ` P ) ) ) |
| 57 | 56 | oveqd | |- ( ( ph /\ x e. ( L M K ) ) -> ( F N G ) = ( F ( ( oppCat ` O ) Nat ( oppCat ` P ) ) G ) ) |
| 58 | 34 57 | eleqtrrd | |- ( ( ph /\ x e. ( L M K ) ) -> x e. ( F N G ) ) |
| 59 | 12 58 | impbida | |- ( ph -> ( x e. ( F N G ) <-> x e. ( L M K ) ) ) |
| 60 | 59 | eqrdv | |- ( ph -> ( F N G ) = ( L M K ) ) |