This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 5-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | n0elqs | ⊢ ( ¬ ∅ ∈ ( 𝐴 / 𝑅 ) ↔ 𝐴 ⊆ dom 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecdmn0 | ⊢ ( 𝑥 ∈ dom 𝑅 ↔ [ 𝑥 ] 𝑅 ≠ ∅ ) | |
| 2 | 1 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ dom 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 ≠ ∅ ) |
| 3 | dfss3 | ⊢ ( 𝐴 ⊆ dom 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ dom 𝑅 ) | |
| 4 | nne | ⊢ ( ¬ [ 𝑥 ] 𝑅 ≠ ∅ ↔ [ 𝑥 ] 𝑅 = ∅ ) | |
| 5 | 4 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ [ 𝑥 ] 𝑅 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∅ ) |
| 6 | 5 | notbii | ⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ¬ [ 𝑥 ] 𝑅 ≠ ∅ ↔ ¬ ∃ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∅ ) |
| 7 | dfral2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 ≠ ∅ ↔ ¬ ∃ 𝑥 ∈ 𝐴 ¬ [ 𝑥 ] 𝑅 ≠ ∅ ) | |
| 8 | 0ex | ⊢ ∅ ∈ V | |
| 9 | 8 | elqs | ⊢ ( ∅ ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 ∅ = [ 𝑥 ] 𝑅 ) |
| 10 | eqcom | ⊢ ( ∅ = [ 𝑥 ] 𝑅 ↔ [ 𝑥 ] 𝑅 = ∅ ) | |
| 11 | 10 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∅ = [ 𝑥 ] 𝑅 ↔ ∃ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∅ ) |
| 12 | 9 11 | bitri | ⊢ ( ∅ ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∅ ) |
| 13 | 12 | notbii | ⊢ ( ¬ ∅ ∈ ( 𝐴 / 𝑅 ) ↔ ¬ ∃ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 = ∅ ) |
| 14 | 6 7 13 | 3bitr4ri | ⊢ ( ¬ ∅ ∈ ( 𝐴 / 𝑅 ) ↔ ∀ 𝑥 ∈ 𝐴 [ 𝑥 ] 𝑅 ≠ ∅ ) |
| 15 | 2 3 14 | 3bitr4ri | ⊢ ( ¬ ∅ ∈ ( 𝐴 / 𝑅 ) ↔ 𝐴 ⊆ dom 𝑅 ) |