This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 5-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | n0elqs |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecdmn0 | ||
| 2 | 1 | ralbii | |
| 3 | dfss3 | ||
| 4 | nne | ||
| 5 | 4 | rexbii | |
| 6 | 5 | notbii | |
| 7 | dfral2 | ||
| 8 | 0ex | ||
| 9 | 8 | elqs | |
| 10 | eqcom | ||
| 11 | 10 | rexbii | |
| 12 | 9 11 | bitri | |
| 13 | 12 | notbii | |
| 14 | 6 7 13 | 3bitr4ri | |
| 15 | 2 3 14 | 3bitr4ri |