This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 5-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | n0elqs | |- ( -. (/) e. ( A /. R ) <-> A C_ dom R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecdmn0 | |- ( x e. dom R <-> [ x ] R =/= (/) ) |
|
| 2 | 1 | ralbii | |- ( A. x e. A x e. dom R <-> A. x e. A [ x ] R =/= (/) ) |
| 3 | dfss3 | |- ( A C_ dom R <-> A. x e. A x e. dom R ) |
|
| 4 | nne | |- ( -. [ x ] R =/= (/) <-> [ x ] R = (/) ) |
|
| 5 | 4 | rexbii | |- ( E. x e. A -. [ x ] R =/= (/) <-> E. x e. A [ x ] R = (/) ) |
| 6 | 5 | notbii | |- ( -. E. x e. A -. [ x ] R =/= (/) <-> -. E. x e. A [ x ] R = (/) ) |
| 7 | dfral2 | |- ( A. x e. A [ x ] R =/= (/) <-> -. E. x e. A -. [ x ] R =/= (/) ) |
|
| 8 | 0ex | |- (/) e. _V |
|
| 9 | 8 | elqs | |- ( (/) e. ( A /. R ) <-> E. x e. A (/) = [ x ] R ) |
| 10 | eqcom | |- ( (/) = [ x ] R <-> [ x ] R = (/) ) |
|
| 11 | 10 | rexbii | |- ( E. x e. A (/) = [ x ] R <-> E. x e. A [ x ] R = (/) ) |
| 12 | 9 11 | bitri | |- ( (/) e. ( A /. R ) <-> E. x e. A [ x ] R = (/) ) |
| 13 | 12 | notbii | |- ( -. (/) e. ( A /. R ) <-> -. E. x e. A [ x ] R = (/) ) |
| 14 | 6 7 13 | 3bitr4ri | |- ( -. (/) e. ( A /. R ) <-> A. x e. A [ x ] R =/= (/) ) |
| 15 | 2 3 14 | 3bitr4ri | |- ( -. (/) e. ( A /. R ) <-> A C_ dom R ) |