This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A syllogism inference. (Contributed by NM, 1-Aug-2007) (Proof shortened by Wolf Lammen, 27-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3anr2.1 | ⊢ ( 𝜑 → 𝜃 ) | |
| syl3anr2.2 | ⊢ ( ( 𝜒 ∧ ( 𝜓 ∧ 𝜃 ∧ 𝜏 ) ) → 𝜂 ) | ||
| Assertion | syl3anr2 | ⊢ ( ( 𝜒 ∧ ( 𝜓 ∧ 𝜑 ∧ 𝜏 ) ) → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anr2.1 | ⊢ ( 𝜑 → 𝜃 ) | |
| 2 | syl3anr2.2 | ⊢ ( ( 𝜒 ∧ ( 𝜓 ∧ 𝜃 ∧ 𝜏 ) ) → 𝜂 ) | |
| 3 | 1 | 3anim2i | ⊢ ( ( 𝜓 ∧ 𝜑 ∧ 𝜏 ) → ( 𝜓 ∧ 𝜃 ∧ 𝜏 ) ) |
| 4 | 3 2 | sylan2 | ⊢ ( ( 𝜒 ∧ ( 𝜓 ∧ 𝜑 ∧ 𝜏 ) ) → 𝜂 ) |