This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in Lang p. 6, second formula. (Contributed by AV, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnngsum.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnngsum.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnngsum.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) | ||
| Assertion | mulgnn0gsum | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnngsum.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnngsum.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnngsum.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) | |
| 4 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 5 | 1 2 3 | mulgnngsum | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) |
| 6 | 5 | ex | ⊢ ( 𝑁 ∈ ℕ → ( 𝑋 ∈ 𝐵 → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 7 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) | |
| 8 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 9 | 1 8 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 10 | 7 9 | sylan9eq | ⊢ ( ( 𝑁 = 0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 11 | oveq2 | ⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ( 1 ... 0 ) ) | |
| 12 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ∅ ) |
| 14 | eqidd | ⊢ ( 𝑁 = 0 → 𝑋 = 𝑋 ) | |
| 15 | 13 14 | mpteq12dv | ⊢ ( 𝑁 = 0 → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) = ( 𝑥 ∈ ∅ ↦ 𝑋 ) ) |
| 16 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ 𝑋 ) = ∅ | |
| 17 | 15 16 | eqtrdi | ⊢ ( 𝑁 = 0 → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) = ∅ ) |
| 18 | 3 17 | eqtrid | ⊢ ( 𝑁 = 0 → 𝐹 = ∅ ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑁 = 0 ∧ 𝑋 ∈ 𝐵 ) → 𝐹 = ∅ ) |
| 20 | 19 | oveq2d | ⊢ ( ( 𝑁 = 0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ∅ ) ) |
| 21 | 8 | gsum0 | ⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
| 22 | 20 21 | eqtrdi | ⊢ ( ( 𝑁 = 0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg 𝐹 ) = ( 0g ‘ 𝐺 ) ) |
| 23 | 10 22 | eqtr4d | ⊢ ( ( 𝑁 = 0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) |
| 24 | 23 | ex | ⊢ ( 𝑁 = 0 → ( 𝑋 ∈ 𝐵 → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 25 | 6 24 | jaoi | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝑋 ∈ 𝐵 → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 26 | 4 25 | sylbi | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑋 ∈ 𝐵 → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 27 | 26 | imp | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) |