This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnngsum.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnngsum.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnngsum.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) | ||
| Assertion | mulgnngsum | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnngsum.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnngsum.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnngsum.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) | |
| 4 | elnnuz | ⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 5 | 4 | biimpi | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 7 | 3 | a1i | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) ) |
| 8 | eqidd | ⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑥 = 𝑖 ) → 𝑋 = 𝑋 ) | |
| 9 | simpr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑖 ∈ ( 1 ... 𝑁 ) ) | |
| 10 | simpr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑋 ∈ 𝐵 ) |
| 12 | 7 8 9 11 | fvmptd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) = 𝑋 ) |
| 13 | elfznn | ⊢ ( 𝑖 ∈ ( 1 ... 𝑁 ) → 𝑖 ∈ ℕ ) | |
| 14 | fvconst2g | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑖 ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑖 ) = 𝑋 ) | |
| 15 | 10 13 14 | syl2an | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑖 ) = 𝑋 ) |
| 16 | 12 15 | eqtr4d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) = ( ( ℕ × { 𝑋 } ) ‘ 𝑖 ) ) |
| 17 | 6 16 | seqfveq | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑁 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 18 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 19 | elfvex | ⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → 𝐺 ∈ V ) | |
| 20 | 19 1 | eleq2s | ⊢ ( 𝑋 ∈ 𝐵 → 𝐺 ∈ V ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ V ) |
| 22 | 10 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → 𝑋 ∈ 𝐵 ) |
| 23 | 22 3 | fmptd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐵 ) |
| 24 | 1 18 21 6 23 | gsumval2 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑁 ) ) |
| 25 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) | |
| 26 | 1 18 2 25 | mulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 27 | 17 24 26 | 3eqtr4rd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) |