This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in Lang p. 6, second formula. (Contributed by AV, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnngsum.b | |- B = ( Base ` G ) |
|
| mulgnngsum.t | |- .x. = ( .g ` G ) |
||
| mulgnngsum.f | |- F = ( x e. ( 1 ... N ) |-> X ) |
||
| Assertion | mulgnn0gsum | |- ( ( N e. NN0 /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnngsum.b | |- B = ( Base ` G ) |
|
| 2 | mulgnngsum.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgnngsum.f | |- F = ( x e. ( 1 ... N ) |-> X ) |
|
| 4 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 5 | 1 2 3 | mulgnngsum | |- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) |
| 6 | 5 | ex | |- ( N e. NN -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) ) |
| 7 | oveq1 | |- ( N = 0 -> ( N .x. X ) = ( 0 .x. X ) ) |
|
| 8 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 9 | 1 8 2 | mulg0 | |- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 10 | 7 9 | sylan9eq | |- ( ( N = 0 /\ X e. B ) -> ( N .x. X ) = ( 0g ` G ) ) |
| 11 | oveq2 | |- ( N = 0 -> ( 1 ... N ) = ( 1 ... 0 ) ) |
|
| 12 | fz10 | |- ( 1 ... 0 ) = (/) |
|
| 13 | 11 12 | eqtrdi | |- ( N = 0 -> ( 1 ... N ) = (/) ) |
| 14 | eqidd | |- ( N = 0 -> X = X ) |
|
| 15 | 13 14 | mpteq12dv | |- ( N = 0 -> ( x e. ( 1 ... N ) |-> X ) = ( x e. (/) |-> X ) ) |
| 16 | mpt0 | |- ( x e. (/) |-> X ) = (/) |
|
| 17 | 15 16 | eqtrdi | |- ( N = 0 -> ( x e. ( 1 ... N ) |-> X ) = (/) ) |
| 18 | 3 17 | eqtrid | |- ( N = 0 -> F = (/) ) |
| 19 | 18 | adantr | |- ( ( N = 0 /\ X e. B ) -> F = (/) ) |
| 20 | 19 | oveq2d | |- ( ( N = 0 /\ X e. B ) -> ( G gsum F ) = ( G gsum (/) ) ) |
| 21 | 8 | gsum0 | |- ( G gsum (/) ) = ( 0g ` G ) |
| 22 | 20 21 | eqtrdi | |- ( ( N = 0 /\ X e. B ) -> ( G gsum F ) = ( 0g ` G ) ) |
| 23 | 10 22 | eqtr4d | |- ( ( N = 0 /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) |
| 24 | 23 | ex | |- ( N = 0 -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) ) |
| 25 | 6 24 | jaoi | |- ( ( N e. NN \/ N = 0 ) -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) ) |
| 26 | 4 25 | sylbi | |- ( N e. NN0 -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) ) |
| 27 | 26 | imp | |- ( ( N e. NN0 /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) |