This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in Lang p. 6, second formula. (Contributed by AV, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnngsum.b | ||
| mulgnngsum.t | |||
| mulgnngsum.f | |||
| Assertion | mulgnn0gsum |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnngsum.b | ||
| 2 | mulgnngsum.t | ||
| 3 | mulgnngsum.f | ||
| 4 | elnn0 | ||
| 5 | 1 2 3 | mulgnngsum | |
| 6 | 5 | ex | |
| 7 | oveq1 | ||
| 8 | eqid | ||
| 9 | 1 8 2 | mulg0 | |
| 10 | 7 9 | sylan9eq | |
| 11 | oveq2 | ||
| 12 | fz10 | ||
| 13 | 11 12 | eqtrdi | |
| 14 | eqidd | ||
| 15 | 13 14 | mpteq12dv | |
| 16 | mpt0 | ||
| 17 | 15 16 | eqtrdi | |
| 18 | 3 17 | eqtrid | |
| 19 | 18 | adantr | |
| 20 | 19 | oveq2d | |
| 21 | 8 | gsum0 | |
| 22 | 20 21 | eqtrdi | |
| 23 | 10 22 | eqtr4d | |
| 24 | 23 | ex | |
| 25 | 6 24 | jaoi | |
| 26 | 4 25 | sylbi | |
| 27 | 26 | imp |