This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 12-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmulgnn.1 | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| ressmulgnn.2 | ⊢ 𝐴 ⊆ ( Base ‘ 𝐺 ) | ||
| ressmulgnn.3 | ⊢ ∗ = ( .g ‘ 𝐺 ) | ||
| ressmulgnn.4 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | ressmulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ∗ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnn.1 | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| 2 | ressmulgnn.2 | ⊢ 𝐴 ⊆ ( Base ‘ 𝐺 ) | |
| 3 | ressmulgnn.3 | ⊢ ∗ = ( .g ‘ 𝐺 ) | |
| 4 | ressmulgnn.4 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 6 | 1 5 | ressbas2 | ⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
| 7 | 2 6 | ax-mp | ⊢ 𝐴 = ( Base ‘ 𝐻 ) |
| 8 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 9 | eqid | ⊢ ( .g ‘ 𝐻 ) = ( .g ‘ 𝐻 ) | |
| 10 | fvex | ⊢ ( Base ‘ 𝐺 ) ∈ V | |
| 11 | 10 2 | ssexi | ⊢ 𝐴 ∈ V |
| 12 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 13 | 1 12 | ressplusg | ⊢ ( 𝐴 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 14 | 11 13 | ax-mp | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) |
| 15 | seqeq2 | ⊢ ( ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) → seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ) | |
| 16 | 14 15 | ax-mp | ⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) |
| 17 | 7 8 9 16 | mulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 18 | simpr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) | |
| 19 | 2 18 | sselid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 20 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) | |
| 21 | 5 12 3 20 | mulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑁 ∗ 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 22 | 19 21 | syldan | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ∗ 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 23 | 17 22 | eqtr4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ∗ 𝑋 ) ) |