This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mulcxp . (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulcxp.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| mulcxp.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | mulcxplem | ⊢ ( 𝜑 → ( 0 ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcxp.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | mulcxp.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 3 | oveq2 | ⊢ ( 𝐶 = 0 → ( 0 ↑𝑐 𝐶 ) = ( 0 ↑𝑐 0 ) ) | |
| 4 | 0cn | ⊢ 0 ∈ ℂ | |
| 5 | cxp0 | ⊢ ( 0 ∈ ℂ → ( 0 ↑𝑐 0 ) = 1 ) | |
| 6 | 4 5 | ax-mp | ⊢ ( 0 ↑𝑐 0 ) = 1 |
| 7 | 3 6 | eqtrdi | ⊢ ( 𝐶 = 0 → ( 0 ↑𝑐 𝐶 ) = 1 ) |
| 8 | oveq2 | ⊢ ( 𝐶 = 0 → ( 𝐴 ↑𝑐 𝐶 ) = ( 𝐴 ↑𝑐 0 ) ) | |
| 9 | 8 7 | oveq12d | ⊢ ( 𝐶 = 0 → ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) = ( ( 𝐴 ↑𝑐 0 ) · 1 ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝐶 = 0 → ( ( 0 ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) ↔ 1 = ( ( 𝐴 ↑𝑐 0 ) · 1 ) ) ) |
| 11 | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) | |
| 12 | 1 2 11 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
| 14 | 13 | mul01d | ⊢ ( ( 𝜑 ∧ 𝐶 ≠ 0 ) → ( ( 𝐴 ↑𝑐 𝐶 ) · 0 ) = 0 ) |
| 15 | 0cxp | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 0 ↑𝑐 𝐶 ) = 0 ) | |
| 16 | 2 15 | sylan | ⊢ ( ( 𝜑 ∧ 𝐶 ≠ 0 ) → ( 0 ↑𝑐 𝐶 ) = 0 ) |
| 17 | 16 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝐶 ≠ 0 ) → ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐶 ) · 0 ) ) |
| 18 | 14 17 16 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝐶 ≠ 0 ) → ( 0 ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) ) |
| 19 | cxp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 0 ) = 1 ) | |
| 20 | 1 19 | syl | ⊢ ( 𝜑 → ( 𝐴 ↑𝑐 0 ) = 1 ) |
| 21 | 20 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 ↑𝑐 0 ) · 1 ) = ( 1 · 1 ) ) |
| 22 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 23 | 21 22 | eqtr2di | ⊢ ( 𝜑 → 1 = ( ( 𝐴 ↑𝑐 0 ) · 1 ) ) |
| 24 | 10 18 23 | pm2.61ne | ⊢ ( 𝜑 → ( 0 ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) ) |