This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxprec | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) = ( 1 / ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
| 2 | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) |
| 4 | rpreccl | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ+ ) | |
| 5 | 4 | rpcnd | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℂ ) |
| 6 | cxpcl | ⊢ ( ( ( 1 / 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) ∈ ℂ ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) ∈ ℂ ) |
| 8 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 9 | rpne0 | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → 𝐴 ≠ 0 ) |
| 11 | simpr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 12 | cxpne0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) | |
| 13 | 8 10 11 12 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) |
| 14 | 8 10 | recidd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 ) |
| 15 | 14 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · ( 1 / 𝐴 ) ) ↑𝑐 𝐵 ) = ( 1 ↑𝑐 𝐵 ) ) |
| 16 | rprege0 | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 18 | 4 | rprege0d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( 1 / 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝐴 ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ( 1 / 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝐴 ) ) ) |
| 20 | mulcxp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( ( 1 / 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝐴 ) ) ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · ( 1 / 𝐴 ) ) ↑𝑐 𝐵 ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) ) ) | |
| 21 | 17 19 11 20 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · ( 1 / 𝐴 ) ) ↑𝑐 𝐵 ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) ) ) |
| 22 | 1cxp | ⊢ ( 𝐵 ∈ ℂ → ( 1 ↑𝑐 𝐵 ) = 1 ) | |
| 23 | 11 22 | syl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 1 ↑𝑐 𝐵 ) = 1 ) |
| 24 | 15 21 23 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) · ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) ) = 1 ) |
| 25 | 3 7 13 24 | mvllmuld | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) = ( 1 / ( 𝐴 ↑𝑐 𝐵 ) ) ) |