This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 14-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulclprlem | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → 𝑥 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ Q ) | |
| 2 | elprnq | ⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → ℎ ∈ Q ) | |
| 3 | recclnq | ⊢ ( ℎ ∈ Q → ( *Q ‘ ℎ ) ∈ Q ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( *Q ‘ ℎ ) ∈ Q ) |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | ovex | ⊢ ( 𝑔 ·Q ℎ ) ∈ V | |
| 7 | ltmnq | ⊢ ( 𝑤 ∈ Q → ( 𝑦 <Q 𝑧 ↔ ( 𝑤 ·Q 𝑦 ) <Q ( 𝑤 ·Q 𝑧 ) ) ) | |
| 8 | fvex | ⊢ ( *Q ‘ ℎ ) ∈ V | |
| 9 | mulcomnq | ⊢ ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 ) | |
| 10 | 5 6 7 8 9 | caovord2 | ⊢ ( ( *Q ‘ ℎ ) ∈ Q → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) ) ) |
| 11 | 4 10 | syl | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) ) ) |
| 12 | mulassnq | ⊢ ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) = ( 𝑔 ·Q ( ℎ ·Q ( *Q ‘ ℎ ) ) ) | |
| 13 | recidnq | ⊢ ( ℎ ∈ Q → ( ℎ ·Q ( *Q ‘ ℎ ) ) = 1Q ) | |
| 14 | 13 | oveq2d | ⊢ ( ℎ ∈ Q → ( 𝑔 ·Q ( ℎ ·Q ( *Q ‘ ℎ ) ) ) = ( 𝑔 ·Q 1Q ) ) |
| 15 | 12 14 | eqtrid | ⊢ ( ℎ ∈ Q → ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) = ( 𝑔 ·Q 1Q ) ) |
| 16 | mulidnq | ⊢ ( 𝑔 ∈ Q → ( 𝑔 ·Q 1Q ) = 𝑔 ) | |
| 17 | 15 16 | sylan9eqr | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) = 𝑔 ) |
| 18 | 17 | breq2d | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q ( ( 𝑔 ·Q ℎ ) ·Q ( *Q ‘ ℎ ) ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 ) ) |
| 19 | 11 18 | bitrd | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 ) ) |
| 20 | 1 2 19 | syl2an | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) ↔ ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 ) ) |
| 21 | prcdnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 → ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 ) ) | |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) <Q 𝑔 → ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 ) ) |
| 23 | 20 22 | sylbid | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 ) ) |
| 24 | df-mp | ⊢ ·P = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 ·Q 𝑧 ) } ) | |
| 25 | mulclnq | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 ·Q 𝑧 ) ∈ Q ) | |
| 26 | 24 25 | genpprecl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 27 | 26 | exp4b | ⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 → ( ℎ ∈ 𝐵 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) ) ) |
| 28 | 27 | com34 | ⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( ℎ ∈ 𝐵 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) ) ) |
| 29 | 28 | imp32 | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 30 | 29 | adantlr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ∈ 𝐴 → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 31 | 23 30 | syld | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 33 | 2 | adantl | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ℎ ∈ Q ) |
| 34 | mulassnq | ⊢ ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) = ( 𝑥 ·Q ( ( *Q ‘ ℎ ) ·Q ℎ ) ) | |
| 35 | mulcomnq | ⊢ ( ( *Q ‘ ℎ ) ·Q ℎ ) = ( ℎ ·Q ( *Q ‘ ℎ ) ) | |
| 36 | 35 13 | eqtrid | ⊢ ( ℎ ∈ Q → ( ( *Q ‘ ℎ ) ·Q ℎ ) = 1Q ) |
| 37 | 36 | oveq2d | ⊢ ( ℎ ∈ Q → ( 𝑥 ·Q ( ( *Q ‘ ℎ ) ·Q ℎ ) ) = ( 𝑥 ·Q 1Q ) ) |
| 38 | 34 37 | eqtrid | ⊢ ( ℎ ∈ Q → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) = ( 𝑥 ·Q 1Q ) ) |
| 39 | mulidnq | ⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q 1Q ) = 𝑥 ) | |
| 40 | 38 39 | sylan9eq | ⊢ ( ( ℎ ∈ Q ∧ 𝑥 ∈ Q ) → ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) = 𝑥 ) |
| 41 | 40 | eleq1d | ⊢ ( ( ℎ ∈ Q ∧ 𝑥 ∈ Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ↔ 𝑥 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 42 | 33 41 | sylan | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ℎ ) ) ·Q ℎ ) ∈ ( 𝐴 ·P 𝐵 ) ↔ 𝑥 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 43 | 32 42 | sylibd | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 ·Q ℎ ) → 𝑥 ∈ ( 𝐴 ·P 𝐵 ) ) ) |