This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 14-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulclprlem | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( xx e. ( A .P. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq | |- ( ( A e. P. /\ g e. A ) -> g e. Q. ) |
|
| 2 | elprnq | |- ( ( B e. P. /\ h e. B ) -> h e. Q. ) |
|
| 3 | recclnq | |- ( h e. Q. -> ( *Q ` h ) e. Q. ) |
|
| 4 | 3 | adantl | |- ( ( g e. Q. /\ h e. Q. ) -> ( *Q ` h ) e. Q. ) |
| 5 | vex | |- x e. _V |
|
| 6 | ovex | |- ( g .Q h ) e. _V |
|
| 7 | ltmnq | |- ( w e. Q. -> ( y( w .Q y ) |
|
| 8 | fvex | |- ( *Q ` h ) e. _V |
|
| 9 | mulcomnq | |- ( y .Q z ) = ( z .Q y ) |
|
| 10 | 5 6 7 8 9 | caovord2 | |- ( ( *Q ` h ) e. Q. -> ( x( x .Q ( *Q ` h ) ) |
| 11 | 4 10 | syl | |- ( ( g e. Q. /\ h e. Q. ) -> ( x( x .Q ( *Q ` h ) ) |
| 12 | mulassnq | |- ( ( g .Q h ) .Q ( *Q ` h ) ) = ( g .Q ( h .Q ( *Q ` h ) ) ) |
|
| 13 | recidnq | |- ( h e. Q. -> ( h .Q ( *Q ` h ) ) = 1Q ) |
|
| 14 | 13 | oveq2d | |- ( h e. Q. -> ( g .Q ( h .Q ( *Q ` h ) ) ) = ( g .Q 1Q ) ) |
| 15 | 12 14 | eqtrid | |- ( h e. Q. -> ( ( g .Q h ) .Q ( *Q ` h ) ) = ( g .Q 1Q ) ) |
| 16 | mulidnq | |- ( g e. Q. -> ( g .Q 1Q ) = g ) |
|
| 17 | 15 16 | sylan9eqr | |- ( ( g e. Q. /\ h e. Q. ) -> ( ( g .Q h ) .Q ( *Q ` h ) ) = g ) |
| 18 | 17 | breq2d | |- ( ( g e. Q. /\ h e. Q. ) -> ( ( x .Q ( *Q ` h ) )( x .Q ( *Q ` h ) ) |
| 19 | 11 18 | bitrd | |- ( ( g e. Q. /\ h e. Q. ) -> ( x( x .Q ( *Q ` h ) ) |
| 20 | 1 2 19 | syl2an | |- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( x( x .Q ( *Q ` h ) ) |
| 21 | prcdnq | |- ( ( A e. P. /\ g e. A ) -> ( ( x .Q ( *Q ` h ) )( x .Q ( *Q ` h ) ) e. A ) ) |
|
| 22 | 21 | adantr | |- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( ( x .Q ( *Q ` h ) )( x .Q ( *Q ` h ) ) e. A ) ) |
| 23 | 20 22 | sylbid | |- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( x( x .Q ( *Q ` h ) ) e. A ) ) |
| 24 | df-mp | |- .P. = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y .Q z ) } ) |
|
| 25 | mulclnq | |- ( ( y e. Q. /\ z e. Q. ) -> ( y .Q z ) e. Q. ) |
|
| 26 | 24 25 | genpprecl | |- ( ( A e. P. /\ B e. P. ) -> ( ( ( x .Q ( *Q ` h ) ) e. A /\ h e. B ) -> ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) |
| 27 | 26 | exp4b | |- ( A e. P. -> ( B e. P. -> ( ( x .Q ( *Q ` h ) ) e. A -> ( h e. B -> ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) ) ) |
| 28 | 27 | com34 | |- ( A e. P. -> ( B e. P. -> ( h e. B -> ( ( x .Q ( *Q ` h ) ) e. A -> ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) ) ) |
| 29 | 28 | imp32 | |- ( ( A e. P. /\ ( B e. P. /\ h e. B ) ) -> ( ( x .Q ( *Q ` h ) ) e. A -> ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) |
| 30 | 29 | adantlr | |- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( ( x .Q ( *Q ` h ) ) e. A -> ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) |
| 31 | 23 30 | syld | |- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( x( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) |
| 32 | 31 | adantr | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) ) ) |
| 33 | 2 | adantl | |- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> h e. Q. ) |
| 34 | mulassnq | |- ( ( x .Q ( *Q ` h ) ) .Q h ) = ( x .Q ( ( *Q ` h ) .Q h ) ) |
|
| 35 | mulcomnq | |- ( ( *Q ` h ) .Q h ) = ( h .Q ( *Q ` h ) ) |
|
| 36 | 35 13 | eqtrid | |- ( h e. Q. -> ( ( *Q ` h ) .Q h ) = 1Q ) |
| 37 | 36 | oveq2d | |- ( h e. Q. -> ( x .Q ( ( *Q ` h ) .Q h ) ) = ( x .Q 1Q ) ) |
| 38 | 34 37 | eqtrid | |- ( h e. Q. -> ( ( x .Q ( *Q ` h ) ) .Q h ) = ( x .Q 1Q ) ) |
| 39 | mulidnq | |- ( x e. Q. -> ( x .Q 1Q ) = x ) |
|
| 40 | 38 39 | sylan9eq | |- ( ( h e. Q. /\ x e. Q. ) -> ( ( x .Q ( *Q ` h ) ) .Q h ) = x ) |
| 41 | 40 | eleq1d | |- ( ( h e. Q. /\ x e. Q. ) -> ( ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) <-> x e. ( A .P. B ) ) ) |
| 42 | 33 41 | sylan | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( ( ( x .Q ( *Q ` h ) ) .Q h ) e. ( A .P. B ) <-> x e. ( A .P. B ) ) ) |
| 43 | 32 42 | sylibd | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( xx e. ( A .P. B ) ) ) |