This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used in real number construction. (Contributed by NM, 26-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovdir.1 | ⊢ 𝐴 ∈ V | |
| caovdir.2 | ⊢ 𝐵 ∈ V | ||
| caovdir.3 | ⊢ 𝐶 ∈ V | ||
| caovdir.com | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | ||
| caovdir.distr | ⊢ ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) | ||
| caovdl.4 | ⊢ 𝐷 ∈ V | ||
| caovdl.5 | ⊢ 𝐻 ∈ V | ||
| caovdl.ass | ⊢ ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) | ||
| caovdl2.6 | ⊢ 𝑅 ∈ V | ||
| caovdl2.com | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) | ||
| caovdl2.ass | ⊢ ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) | ||
| Assertion | caovlem2 | ⊢ ( ( ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐷 ) ) 𝐺 𝐻 ) 𝐹 ( ( ( 𝐴 𝐺 𝐷 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) 𝐺 𝑅 ) ) = ( ( 𝐴 𝐺 ( ( 𝐶 𝐺 𝐻 ) 𝐹 ( 𝐷 𝐺 𝑅 ) ) ) 𝐹 ( 𝐵 𝐺 ( ( 𝐶 𝐺 𝑅 ) 𝐹 ( 𝐷 𝐺 𝐻 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdir.1 | ⊢ 𝐴 ∈ V | |
| 2 | caovdir.2 | ⊢ 𝐵 ∈ V | |
| 3 | caovdir.3 | ⊢ 𝐶 ∈ V | |
| 4 | caovdir.com | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | |
| 5 | caovdir.distr | ⊢ ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) | |
| 6 | caovdl.4 | ⊢ 𝐷 ∈ V | |
| 7 | caovdl.5 | ⊢ 𝐻 ∈ V | |
| 8 | caovdl.ass | ⊢ ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) | |
| 9 | caovdl2.6 | ⊢ 𝑅 ∈ V | |
| 10 | caovdl2.com | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) | |
| 11 | caovdl2.ass | ⊢ ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) | |
| 12 | ovex | ⊢ ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) ∈ V | |
| 13 | ovex | ⊢ ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) ∈ V | |
| 14 | ovex | ⊢ ( 𝐴 𝐺 ( 𝐷 𝐺 𝑅 ) ) ∈ V | |
| 15 | ovex | ⊢ ( 𝐵 𝐺 ( 𝐶 𝐺 𝑅 ) ) ∈ V | |
| 16 | 12 13 14 10 11 15 | caov42 | ⊢ ( ( ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) ) 𝐹 ( ( 𝐴 𝐺 ( 𝐷 𝐺 𝑅 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐶 𝐺 𝑅 ) ) ) ) = ( ( ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) 𝐹 ( 𝐴 𝐺 ( 𝐷 𝐺 𝑅 ) ) ) 𝐹 ( ( 𝐵 𝐺 ( 𝐶 𝐺 𝑅 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) ) ) |
| 17 | 1 2 3 4 5 6 7 8 | caovdilem | ⊢ ( ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐷 ) ) 𝐺 𝐻 ) = ( ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) ) |
| 18 | 1 2 6 4 5 3 9 8 | caovdilem | ⊢ ( ( ( 𝐴 𝐺 𝐷 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) 𝐺 𝑅 ) = ( ( 𝐴 𝐺 ( 𝐷 𝐺 𝑅 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐶 𝐺 𝑅 ) ) ) |
| 19 | 17 18 | oveq12i | ⊢ ( ( ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐷 ) ) 𝐺 𝐻 ) 𝐹 ( ( ( 𝐴 𝐺 𝐷 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) 𝐺 𝑅 ) ) = ( ( ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) ) 𝐹 ( ( 𝐴 𝐺 ( 𝐷 𝐺 𝑅 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐶 𝐺 𝑅 ) ) ) ) |
| 20 | ovex | ⊢ ( 𝐶 𝐺 𝐻 ) ∈ V | |
| 21 | ovex | ⊢ ( 𝐷 𝐺 𝑅 ) ∈ V | |
| 22 | 1 20 21 5 | caovdi | ⊢ ( 𝐴 𝐺 ( ( 𝐶 𝐺 𝐻 ) 𝐹 ( 𝐷 𝐺 𝑅 ) ) ) = ( ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) 𝐹 ( 𝐴 𝐺 ( 𝐷 𝐺 𝑅 ) ) ) |
| 23 | ovex | ⊢ ( 𝐶 𝐺 𝑅 ) ∈ V | |
| 24 | ovex | ⊢ ( 𝐷 𝐺 𝐻 ) ∈ V | |
| 25 | 2 23 24 5 | caovdi | ⊢ ( 𝐵 𝐺 ( ( 𝐶 𝐺 𝑅 ) 𝐹 ( 𝐷 𝐺 𝐻 ) ) ) = ( ( 𝐵 𝐺 ( 𝐶 𝐺 𝑅 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) ) |
| 26 | 22 25 | oveq12i | ⊢ ( ( 𝐴 𝐺 ( ( 𝐶 𝐺 𝐻 ) 𝐹 ( 𝐷 𝐺 𝑅 ) ) ) 𝐹 ( 𝐵 𝐺 ( ( 𝐶 𝐺 𝑅 ) 𝐹 ( 𝐷 𝐺 𝐻 ) ) ) ) = ( ( ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) 𝐹 ( 𝐴 𝐺 ( 𝐷 𝐺 𝑅 ) ) ) 𝐹 ( ( 𝐵 𝐺 ( 𝐶 𝐺 𝑅 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) ) ) |
| 27 | 16 19 26 | 3eqtr4i | ⊢ ( ( ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐷 ) ) 𝐺 𝐻 ) 𝐹 ( ( ( 𝐴 𝐺 𝐷 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) 𝐺 𝑅 ) ) = ( ( 𝐴 𝐺 ( ( 𝐶 𝐺 𝐻 ) 𝐹 ( 𝐷 𝐺 𝑅 ) ) ) 𝐹 ( 𝐵 𝐺 ( ( 𝐶 𝐺 𝑅 ) 𝐹 ( 𝐷 𝐺 𝐻 ) ) ) ) |