This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is not a signed real. (Contributed by NM, 25-Aug-1995) (Revised by Mario Carneiro, 10-Jul-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0nsr | ⊢ ¬ ∅ ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∅ = ∅ | |
| 2 | enrer | ⊢ ~R Er ( P × P ) | |
| 3 | erdm | ⊢ ( ~R Er ( P × P ) → dom ~R = ( P × P ) ) | |
| 4 | 2 3 | ax-mp | ⊢ dom ~R = ( P × P ) |
| 5 | elqsn0 | ⊢ ( ( dom ~R = ( P × P ) ∧ ∅ ∈ ( ( P × P ) / ~R ) ) → ∅ ≠ ∅ ) | |
| 6 | 4 5 | mpan | ⊢ ( ∅ ∈ ( ( P × P ) / ~R ) → ∅ ≠ ∅ ) |
| 7 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 8 | 6 7 | eleq2s | ⊢ ( ∅ ∈ R → ∅ ≠ ∅ ) |
| 9 | 8 | necon2bi | ⊢ ( ∅ = ∅ → ¬ ∅ ∈ R ) |
| 10 | 1 9 | ax-mp | ⊢ ¬ ∅ ∈ R |