This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrisval.1 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| mrisval.2 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| Assertion | mrisval | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐼 = { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrisval.1 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 2 | mrisval.2 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 3 | fvssunirn | ⊢ ( Moore ‘ 𝑋 ) ⊆ ∪ ran Moore | |
| 4 | 3 | sseli | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐴 ∈ ∪ ran Moore ) |
| 5 | unieq | ⊢ ( 𝑐 = 𝐴 → ∪ 𝑐 = ∪ 𝐴 ) | |
| 6 | 5 | pweqd | ⊢ ( 𝑐 = 𝐴 → 𝒫 ∪ 𝑐 = 𝒫 ∪ 𝐴 ) |
| 7 | fveq2 | ⊢ ( 𝑐 = 𝐴 → ( mrCls ‘ 𝑐 ) = ( mrCls ‘ 𝐴 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑐 = 𝐴 → ( mrCls ‘ 𝑐 ) = 𝑁 ) |
| 9 | 8 | fveq1d | ⊢ ( 𝑐 = 𝐴 → ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) |
| 10 | 9 | eleq2d | ⊢ ( 𝑐 = 𝐴 → ( 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) ) |
| 11 | 10 | notbid | ⊢ ( 𝑐 = 𝐴 → ( ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑐 = 𝐴 → ( ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) ) |
| 13 | 6 12 | rabeqbidv | ⊢ ( 𝑐 = 𝐴 → { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } = { 𝑠 ∈ 𝒫 ∪ 𝐴 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 14 | df-mri | ⊢ mrInd = ( 𝑐 ∈ ∪ ran Moore ↦ { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) | |
| 15 | vuniex | ⊢ ∪ 𝑐 ∈ V | |
| 16 | 15 | pwex | ⊢ 𝒫 ∪ 𝑐 ∈ V |
| 17 | 16 | rabex | ⊢ { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ∈ V |
| 18 | 13 14 17 | fvmpt3i | ⊢ ( 𝐴 ∈ ∪ ran Moore → ( mrInd ‘ 𝐴 ) = { 𝑠 ∈ 𝒫 ∪ 𝐴 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 19 | 4 18 | syl | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( mrInd ‘ 𝐴 ) = { 𝑠 ∈ 𝒫 ∪ 𝐴 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 20 | 2 19 | eqtrid | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐼 = { 𝑠 ∈ 𝒫 ∪ 𝐴 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 21 | mreuni | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐴 = 𝑋 ) | |
| 22 | 21 | pweqd | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝒫 ∪ 𝐴 = 𝒫 𝑋 ) |
| 23 | 22 | rabeqdv | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → { 𝑠 ∈ 𝒫 ∪ 𝐴 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } = { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 24 | 20 23 | eqtrd | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐼 = { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |