This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrisval.1 | |- N = ( mrCls ` A ) |
|
| mrisval.2 | |- I = ( mrInd ` A ) |
||
| Assertion | mrisval | |- ( A e. ( Moore ` X ) -> I = { s e. ~P X | A. x e. s -. x e. ( N ` ( s \ { x } ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrisval.1 | |- N = ( mrCls ` A ) |
|
| 2 | mrisval.2 | |- I = ( mrInd ` A ) |
|
| 3 | fvssunirn | |- ( Moore ` X ) C_ U. ran Moore |
|
| 4 | 3 | sseli | |- ( A e. ( Moore ` X ) -> A e. U. ran Moore ) |
| 5 | unieq | |- ( c = A -> U. c = U. A ) |
|
| 6 | 5 | pweqd | |- ( c = A -> ~P U. c = ~P U. A ) |
| 7 | fveq2 | |- ( c = A -> ( mrCls ` c ) = ( mrCls ` A ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( c = A -> ( mrCls ` c ) = N ) |
| 9 | 8 | fveq1d | |- ( c = A -> ( ( mrCls ` c ) ` ( s \ { x } ) ) = ( N ` ( s \ { x } ) ) ) |
| 10 | 9 | eleq2d | |- ( c = A -> ( x e. ( ( mrCls ` c ) ` ( s \ { x } ) ) <-> x e. ( N ` ( s \ { x } ) ) ) ) |
| 11 | 10 | notbid | |- ( c = A -> ( -. x e. ( ( mrCls ` c ) ` ( s \ { x } ) ) <-> -. x e. ( N ` ( s \ { x } ) ) ) ) |
| 12 | 11 | ralbidv | |- ( c = A -> ( A. x e. s -. x e. ( ( mrCls ` c ) ` ( s \ { x } ) ) <-> A. x e. s -. x e. ( N ` ( s \ { x } ) ) ) ) |
| 13 | 6 12 | rabeqbidv | |- ( c = A -> { s e. ~P U. c | A. x e. s -. x e. ( ( mrCls ` c ) ` ( s \ { x } ) ) } = { s e. ~P U. A | A. x e. s -. x e. ( N ` ( s \ { x } ) ) } ) |
| 14 | df-mri | |- mrInd = ( c e. U. ran Moore |-> { s e. ~P U. c | A. x e. s -. x e. ( ( mrCls ` c ) ` ( s \ { x } ) ) } ) |
|
| 15 | vuniex | |- U. c e. _V |
|
| 16 | 15 | pwex | |- ~P U. c e. _V |
| 17 | 16 | rabex | |- { s e. ~P U. c | A. x e. s -. x e. ( ( mrCls ` c ) ` ( s \ { x } ) ) } e. _V |
| 18 | 13 14 17 | fvmpt3i | |- ( A e. U. ran Moore -> ( mrInd ` A ) = { s e. ~P U. A | A. x e. s -. x e. ( N ` ( s \ { x } ) ) } ) |
| 19 | 4 18 | syl | |- ( A e. ( Moore ` X ) -> ( mrInd ` A ) = { s e. ~P U. A | A. x e. s -. x e. ( N ` ( s \ { x } ) ) } ) |
| 20 | 2 19 | eqtrid | |- ( A e. ( Moore ` X ) -> I = { s e. ~P U. A | A. x e. s -. x e. ( N ` ( s \ { x } ) ) } ) |
| 21 | mreuni | |- ( A e. ( Moore ` X ) -> U. A = X ) |
|
| 22 | 21 | pweqd | |- ( A e. ( Moore ` X ) -> ~P U. A = ~P X ) |
| 23 | 22 | rabeqdv | |- ( A e. ( Moore ` X ) -> { s e. ~P U. A | A. x e. s -. x e. ( N ` ( s \ { x } ) ) } = { s e. ~P X | A. x e. s -. x e. ( N ` ( s \ { x } ) ) } ) |
| 24 | 20 23 | eqtrd | |- ( A e. ( Moore ` X ) -> I = { s e. ~P X | A. x e. s -. x e. ( N ` ( s \ { x } ) ) } ) |