This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system, a set isindependent if no element of the set is in the closure of the set with the element removed (Section 0.6 in Gratzer p. 27; Definition 4.1.1 in FaureFrolicher p. 83.) mrInd is a class function which takes a Moore system to its set of independent sets. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mri | ⊢ mrInd = ( 𝑐 ∈ ∪ ran Moore ↦ { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmri | ⊢ mrInd | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | cmre | ⊢ Moore | |
| 3 | 2 | crn | ⊢ ran Moore |
| 4 | 3 | cuni | ⊢ ∪ ran Moore |
| 5 | vs | ⊢ 𝑠 | |
| 6 | 1 | cv | ⊢ 𝑐 |
| 7 | 6 | cuni | ⊢ ∪ 𝑐 |
| 8 | 7 | cpw | ⊢ 𝒫 ∪ 𝑐 |
| 9 | vx | ⊢ 𝑥 | |
| 10 | 5 | cv | ⊢ 𝑠 |
| 11 | 9 | cv | ⊢ 𝑥 |
| 12 | cmrc | ⊢ mrCls | |
| 13 | 6 12 | cfv | ⊢ ( mrCls ‘ 𝑐 ) |
| 14 | 11 | csn | ⊢ { 𝑥 } |
| 15 | 10 14 | cdif | ⊢ ( 𝑠 ∖ { 𝑥 } ) |
| 16 | 15 13 | cfv | ⊢ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) |
| 17 | 11 16 | wcel | ⊢ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) |
| 18 | 17 | wn | ⊢ ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) |
| 19 | 18 9 10 | wral | ⊢ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) |
| 20 | 19 5 8 | crab | ⊢ { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } |
| 21 | 1 4 20 | cmpt | ⊢ ( 𝑐 ∈ ∪ ran Moore ↦ { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 22 | 0 21 | wceq | ⊢ mrInd = ( 𝑐 ∈ ∪ ran Moore ↦ { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |