This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subcollection of a closed set system below a given closed set is itself a closed set system. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | submre | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → ( 𝐶 ∩ 𝒫 𝐴 ) ∈ ( Moore ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 | ⊢ ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 | |
| 2 | 1 | a1i | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 ) |
| 3 | simpr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) | |
| 4 | pwidg | ⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ 𝒫 𝐴 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ 𝒫 𝐴 ) |
| 6 | 3 5 | elind | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ ( 𝐶 ∩ 𝒫 𝐴 ) ) |
| 7 | simp1l | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 8 | inss1 | ⊢ ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝐶 | |
| 9 | sstr | ⊢ ( ( 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝐶 ) → 𝑥 ⊆ 𝐶 ) | |
| 10 | 8 9 | mpan2 | ⊢ ( 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) → 𝑥 ⊆ 𝐶 ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ⊆ 𝐶 ) |
| 12 | simp3 | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ≠ ∅ ) | |
| 13 | mreintcl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) | |
| 14 | 7 11 12 13 | syl3anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) |
| 15 | sstr | ⊢ ( ( 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 ) → 𝑥 ⊆ 𝒫 𝐴 ) | |
| 16 | 1 15 | mpan2 | ⊢ ( 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) → 𝑥 ⊆ 𝒫 𝐴 ) |
| 17 | 16 | 3ad2ant2 | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ⊆ 𝒫 𝐴 ) |
| 18 | intssuni2 | ⊢ ( ( 𝑥 ⊆ 𝒫 𝐴 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ ∪ 𝒫 𝐴 ) | |
| 19 | 17 12 18 | syl2anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ ∪ 𝒫 𝐴 ) |
| 20 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 21 | 19 20 | sseqtrdi | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ 𝐴 ) |
| 22 | elpw2g | ⊢ ( 𝐴 ∈ 𝐶 → ( ∩ 𝑥 ∈ 𝒫 𝐴 ↔ ∩ 𝑥 ⊆ 𝐴 ) ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → ( ∩ 𝑥 ∈ 𝒫 𝐴 ↔ ∩ 𝑥 ⊆ 𝐴 ) ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ( ∩ 𝑥 ∈ 𝒫 𝐴 ↔ ∩ 𝑥 ⊆ 𝐴 ) ) |
| 25 | 21 24 | mpbird | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝒫 𝐴 ) |
| 26 | 14 25 | elind | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ ( 𝐶 ∩ 𝒫 𝐴 ) ) |
| 27 | 2 6 26 | ismred | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → ( 𝐶 ∩ 𝒫 𝐴 ) ∈ ( Moore ‘ 𝐴 ) ) |