This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system whose closure operator has the exchange property, if S is independent and contained in the closure of T , and either S or T is finite, then T dominates S . This is an immediate consequence of mreexexd . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreexdomd.1 | ||
| mreexdomd.2 | |||
| mreexdomd.3 | |||
| mreexdomd.4 | |||
| mreexdomd.5 | |||
| mreexdomd.6 | |||
| mreexdomd.7 | |||
| mreexdomd.8 | |||
| Assertion | mreexdomd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexdomd.1 | ||
| 2 | mreexdomd.2 | ||
| 3 | mreexdomd.3 | ||
| 4 | mreexdomd.4 | ||
| 5 | mreexdomd.5 | ||
| 6 | mreexdomd.6 | ||
| 7 | mreexdomd.7 | ||
| 8 | mreexdomd.8 | ||
| 9 | 3 1 8 | mrissd | |
| 10 | dif0 | ||
| 11 | 9 10 | sseqtrrdi | |
| 12 | 6 10 | sseqtrrdi | |
| 13 | un0 | ||
| 14 | 13 | fveq2i | |
| 15 | 5 14 | sseqtrrdi | |
| 16 | un0 | ||
| 17 | 16 8 | eqeltrid | |
| 18 | 1 2 3 4 11 12 15 17 7 | mreexexd | |
| 19 | simprrl | ||
| 20 | simprl | ||
| 21 | 20 | elpwid | |
| 22 | 1 | elfvexd | |
| 23 | 22 6 | ssexd | |
| 24 | ssdomg | ||
| 25 | 23 24 | syl | |
| 26 | 25 | adantr | |
| 27 | 21 26 | mpd | |
| 28 | endomtr | ||
| 29 | 19 27 28 | syl2anc | |
| 30 | 18 29 | rexlimddv |