This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system whose closure operator has the exchange property, if S is independent and contained in the closure of T , and either S or T is finite, then T dominates S . This is an immediate consequence of mreexexd . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreexdomd.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| mreexdomd.2 | |- N = ( mrCls ` A ) |
||
| mreexdomd.3 | |- I = ( mrInd ` A ) |
||
| mreexdomd.4 | |- ( ph -> A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) ) |
||
| mreexdomd.5 | |- ( ph -> S C_ ( N ` T ) ) |
||
| mreexdomd.6 | |- ( ph -> T C_ X ) |
||
| mreexdomd.7 | |- ( ph -> ( S e. Fin \/ T e. Fin ) ) |
||
| mreexdomd.8 | |- ( ph -> S e. I ) |
||
| Assertion | mreexdomd | |- ( ph -> S ~<_ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexdomd.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| 2 | mreexdomd.2 | |- N = ( mrCls ` A ) |
|
| 3 | mreexdomd.3 | |- I = ( mrInd ` A ) |
|
| 4 | mreexdomd.4 | |- ( ph -> A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) ) |
|
| 5 | mreexdomd.5 | |- ( ph -> S C_ ( N ` T ) ) |
|
| 6 | mreexdomd.6 | |- ( ph -> T C_ X ) |
|
| 7 | mreexdomd.7 | |- ( ph -> ( S e. Fin \/ T e. Fin ) ) |
|
| 8 | mreexdomd.8 | |- ( ph -> S e. I ) |
|
| 9 | 3 1 8 | mrissd | |- ( ph -> S C_ X ) |
| 10 | dif0 | |- ( X \ (/) ) = X |
|
| 11 | 9 10 | sseqtrrdi | |- ( ph -> S C_ ( X \ (/) ) ) |
| 12 | 6 10 | sseqtrrdi | |- ( ph -> T C_ ( X \ (/) ) ) |
| 13 | un0 | |- ( T u. (/) ) = T |
|
| 14 | 13 | fveq2i | |- ( N ` ( T u. (/) ) ) = ( N ` T ) |
| 15 | 5 14 | sseqtrrdi | |- ( ph -> S C_ ( N ` ( T u. (/) ) ) ) |
| 16 | un0 | |- ( S u. (/) ) = S |
|
| 17 | 16 8 | eqeltrid | |- ( ph -> ( S u. (/) ) e. I ) |
| 18 | 1 2 3 4 11 12 15 17 7 | mreexexd | |- ( ph -> E. i e. ~P T ( S ~~ i /\ ( i u. (/) ) e. I ) ) |
| 19 | simprrl | |- ( ( ph /\ ( i e. ~P T /\ ( S ~~ i /\ ( i u. (/) ) e. I ) ) ) -> S ~~ i ) |
|
| 20 | simprl | |- ( ( ph /\ ( i e. ~P T /\ ( S ~~ i /\ ( i u. (/) ) e. I ) ) ) -> i e. ~P T ) |
|
| 21 | 20 | elpwid | |- ( ( ph /\ ( i e. ~P T /\ ( S ~~ i /\ ( i u. (/) ) e. I ) ) ) -> i C_ T ) |
| 22 | 1 | elfvexd | |- ( ph -> X e. _V ) |
| 23 | 22 6 | ssexd | |- ( ph -> T e. _V ) |
| 24 | ssdomg | |- ( T e. _V -> ( i C_ T -> i ~<_ T ) ) |
|
| 25 | 23 24 | syl | |- ( ph -> ( i C_ T -> i ~<_ T ) ) |
| 26 | 25 | adantr | |- ( ( ph /\ ( i e. ~P T /\ ( S ~~ i /\ ( i u. (/) ) e. I ) ) ) -> ( i C_ T -> i ~<_ T ) ) |
| 27 | 21 26 | mpd | |- ( ( ph /\ ( i e. ~P T /\ ( S ~~ i /\ ( i u. (/) ) e. I ) ) ) -> i ~<_ T ) |
| 28 | endomtr | |- ( ( S ~~ i /\ i ~<_ T ) -> S ~<_ T ) |
|
| 29 | 19 27 28 | syl2anc | |- ( ( ph /\ ( i e. ~P T /\ ( S ~~ i /\ ( i u. (/) ) e. I ) ) ) -> S ~<_ T ) |
| 30 | 18 29 | rexlimddv | |- ( ph -> S ~<_ T ) |