This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD . (Contributed by Stefan O'Rear, 31-Jan-2015) TODO ( df-riota update): This proof uses the old df-clat and references the required instance of mreclatBAD as a hypothesis. When mreclatBAD is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below.
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mreclatBAD. | ⊢ ( ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ∈ ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) → ( toInc ‘ ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ) ∈ CLat ) | |
| Assertion | mreclatdemoBAD | ⊢ ( 𝑊 ∈ ( TopSp ∩ LMod ) → ( toInc ‘ ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ) ∈ CLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclatBAD. | ⊢ ( ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ∈ ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) → ( toInc ‘ ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ) ∈ CLat ) | |
| 2 | fvex | ⊢ ( TopOpen ‘ 𝑊 ) ∈ V | |
| 3 | 2 | uniex | ⊢ ∪ ( TopOpen ‘ 𝑊 ) ∈ V |
| 4 | mremre | ⊢ ( ∪ ( TopOpen ‘ 𝑊 ) ∈ V → ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) ∈ ( Moore ‘ 𝒫 ∪ ( TopOpen ‘ 𝑊 ) ) ) | |
| 5 | 3 4 | mp1i | ⊢ ( 𝑊 ∈ ( TopSp ∩ LMod ) → ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) ∈ ( Moore ‘ 𝒫 ∪ ( TopOpen ‘ 𝑊 ) ) ) |
| 6 | elinel2 | ⊢ ( 𝑊 ∈ ( TopSp ∩ LMod ) → 𝑊 ∈ LMod ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 8 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 9 | 7 8 | lssmre | ⊢ ( 𝑊 ∈ LMod → ( LSubSp ‘ 𝑊 ) ∈ ( Moore ‘ ( Base ‘ 𝑊 ) ) ) |
| 10 | 6 9 | syl | ⊢ ( 𝑊 ∈ ( TopSp ∩ LMod ) → ( LSubSp ‘ 𝑊 ) ∈ ( Moore ‘ ( Base ‘ 𝑊 ) ) ) |
| 11 | elinel1 | ⊢ ( 𝑊 ∈ ( TopSp ∩ LMod ) → 𝑊 ∈ TopSp ) | |
| 12 | eqid | ⊢ ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 ) | |
| 13 | 7 12 | tpsuni | ⊢ ( 𝑊 ∈ TopSp → ( Base ‘ 𝑊 ) = ∪ ( TopOpen ‘ 𝑊 ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝑊 ∈ TopSp → ( Moore ‘ ( Base ‘ 𝑊 ) ) = ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) ) |
| 15 | 11 14 | syl | ⊢ ( 𝑊 ∈ ( TopSp ∩ LMod ) → ( Moore ‘ ( Base ‘ 𝑊 ) ) = ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) ) |
| 16 | 10 15 | eleqtrd | ⊢ ( 𝑊 ∈ ( TopSp ∩ LMod ) → ( LSubSp ‘ 𝑊 ) ∈ ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) ) |
| 17 | 12 | tpstop | ⊢ ( 𝑊 ∈ TopSp → ( TopOpen ‘ 𝑊 ) ∈ Top ) |
| 18 | eqid | ⊢ ∪ ( TopOpen ‘ 𝑊 ) = ∪ ( TopOpen ‘ 𝑊 ) | |
| 19 | 18 | cldmre | ⊢ ( ( TopOpen ‘ 𝑊 ) ∈ Top → ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ∈ ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) ) |
| 20 | 11 17 19 | 3syl | ⊢ ( 𝑊 ∈ ( TopSp ∩ LMod ) → ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ∈ ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) ) |
| 21 | mreincl | ⊢ ( ( ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) ∈ ( Moore ‘ 𝒫 ∪ ( TopOpen ‘ 𝑊 ) ) ∧ ( LSubSp ‘ 𝑊 ) ∈ ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) ∧ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ∈ ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) ) → ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ∈ ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) ) | |
| 22 | 5 16 20 21 | syl3anc | ⊢ ( 𝑊 ∈ ( TopSp ∩ LMod ) → ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ∈ ( Moore ‘ ∪ ( TopOpen ‘ 𝑊 ) ) ) |
| 23 | 22 1 | syl | ⊢ ( 𝑊 ∈ ( TopSp ∩ LMod ) → ( toInc ‘ ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ) ∈ CLat ) |