This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD . (Contributed by Stefan O'Rear, 31-Jan-2015) TODO ( df-riota update): This proof uses the old df-clat and references the required instance of mreclatBAD as a hypothesis. When mreclatBAD is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below.
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mreclatBAD. | |- ( ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) e. ( Moore ` U. ( TopOpen ` W ) ) -> ( toInc ` ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) ) e. CLat ) |
|
| Assertion | mreclatdemoBAD | |- ( W e. ( TopSp i^i LMod ) -> ( toInc ` ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) ) e. CLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclatBAD. | |- ( ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) e. ( Moore ` U. ( TopOpen ` W ) ) -> ( toInc ` ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) ) e. CLat ) |
|
| 2 | fvex | |- ( TopOpen ` W ) e. _V |
|
| 3 | 2 | uniex | |- U. ( TopOpen ` W ) e. _V |
| 4 | mremre | |- ( U. ( TopOpen ` W ) e. _V -> ( Moore ` U. ( TopOpen ` W ) ) e. ( Moore ` ~P U. ( TopOpen ` W ) ) ) |
|
| 5 | 3 4 | mp1i | |- ( W e. ( TopSp i^i LMod ) -> ( Moore ` U. ( TopOpen ` W ) ) e. ( Moore ` ~P U. ( TopOpen ` W ) ) ) |
| 6 | elinel2 | |- ( W e. ( TopSp i^i LMod ) -> W e. LMod ) |
|
| 7 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 8 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 9 | 7 8 | lssmre | |- ( W e. LMod -> ( LSubSp ` W ) e. ( Moore ` ( Base ` W ) ) ) |
| 10 | 6 9 | syl | |- ( W e. ( TopSp i^i LMod ) -> ( LSubSp ` W ) e. ( Moore ` ( Base ` W ) ) ) |
| 11 | elinel1 | |- ( W e. ( TopSp i^i LMod ) -> W e. TopSp ) |
|
| 12 | eqid | |- ( TopOpen ` W ) = ( TopOpen ` W ) |
|
| 13 | 7 12 | tpsuni | |- ( W e. TopSp -> ( Base ` W ) = U. ( TopOpen ` W ) ) |
| 14 | 13 | fveq2d | |- ( W e. TopSp -> ( Moore ` ( Base ` W ) ) = ( Moore ` U. ( TopOpen ` W ) ) ) |
| 15 | 11 14 | syl | |- ( W e. ( TopSp i^i LMod ) -> ( Moore ` ( Base ` W ) ) = ( Moore ` U. ( TopOpen ` W ) ) ) |
| 16 | 10 15 | eleqtrd | |- ( W e. ( TopSp i^i LMod ) -> ( LSubSp ` W ) e. ( Moore ` U. ( TopOpen ` W ) ) ) |
| 17 | 12 | tpstop | |- ( W e. TopSp -> ( TopOpen ` W ) e. Top ) |
| 18 | eqid | |- U. ( TopOpen ` W ) = U. ( TopOpen ` W ) |
|
| 19 | 18 | cldmre | |- ( ( TopOpen ` W ) e. Top -> ( Clsd ` ( TopOpen ` W ) ) e. ( Moore ` U. ( TopOpen ` W ) ) ) |
| 20 | 11 17 19 | 3syl | |- ( W e. ( TopSp i^i LMod ) -> ( Clsd ` ( TopOpen ` W ) ) e. ( Moore ` U. ( TopOpen ` W ) ) ) |
| 21 | mreincl | |- ( ( ( Moore ` U. ( TopOpen ` W ) ) e. ( Moore ` ~P U. ( TopOpen ` W ) ) /\ ( LSubSp ` W ) e. ( Moore ` U. ( TopOpen ` W ) ) /\ ( Clsd ` ( TopOpen ` W ) ) e. ( Moore ` U. ( TopOpen ` W ) ) ) -> ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) e. ( Moore ` U. ( TopOpen ` W ) ) ) |
|
| 22 | 5 16 20 21 | syl3anc | |- ( W e. ( TopSp i^i LMod ) -> ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) e. ( Moore ` U. ( TopOpen ` W ) ) ) |
| 23 | 22 1 | syl | |- ( W e. ( TopSp i^i LMod ) -> ( toInc ` ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) ) e. CLat ) |