This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of any set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| cssss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| ocvcss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| Assertion | ocvcss | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | cssss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | ocvcss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 4 | 1 3 | ocvocv | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 5 | 3 | ocv2ss | ⊢ ( 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
| 6 | 4 5 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
| 7 | 1 3 | ocvss | ⊢ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 |
| 8 | 7 | a1i | ⊢ ( 𝑆 ⊆ 𝑉 → ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) |
| 9 | 1 2 3 | iscss2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) → ( ( ⊥ ‘ 𝑆 ) ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) ) |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ( ⊥ ‘ 𝑆 ) ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) ) |
| 11 | 6 10 | mpbird | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑆 ) ∈ 𝐶 ) |