This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thlval.k | ⊢ 𝐾 = ( toHL ‘ 𝑊 ) | |
| thlval.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| thlval.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | ||
| thlval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| Assertion | thlval | ⊢ ( 𝑊 ∈ 𝑉 → 𝐾 = ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlval.k | ⊢ 𝐾 = ( toHL ‘ 𝑊 ) | |
| 2 | thlval.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | thlval.i | ⊢ 𝐼 = ( toInc ‘ 𝐶 ) | |
| 4 | thlval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 5 | elex | ⊢ ( 𝑊 ∈ 𝑉 → 𝑊 ∈ V ) | |
| 6 | fveq2 | ⊢ ( ℎ = 𝑊 → ( ClSubSp ‘ ℎ ) = ( ClSubSp ‘ 𝑊 ) ) | |
| 7 | 6 2 | eqtr4di | ⊢ ( ℎ = 𝑊 → ( ClSubSp ‘ ℎ ) = 𝐶 ) |
| 8 | 7 | fveq2d | ⊢ ( ℎ = 𝑊 → ( toInc ‘ ( ClSubSp ‘ ℎ ) ) = ( toInc ‘ 𝐶 ) ) |
| 9 | 8 3 | eqtr4di | ⊢ ( ℎ = 𝑊 → ( toInc ‘ ( ClSubSp ‘ ℎ ) ) = 𝐼 ) |
| 10 | fveq2 | ⊢ ( ℎ = 𝑊 → ( ocv ‘ ℎ ) = ( ocv ‘ 𝑊 ) ) | |
| 11 | 10 4 | eqtr4di | ⊢ ( ℎ = 𝑊 → ( ocv ‘ ℎ ) = ⊥ ) |
| 12 | 11 | opeq2d | ⊢ ( ℎ = 𝑊 → 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 = 〈 ( oc ‘ ndx ) , ⊥ 〉 ) |
| 13 | 9 12 | oveq12d | ⊢ ( ℎ = 𝑊 → ( ( toInc ‘ ( ClSubSp ‘ ℎ ) ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 ) = ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) |
| 14 | df-thl | ⊢ toHL = ( ℎ ∈ V ↦ ( ( toInc ‘ ( ClSubSp ‘ ℎ ) ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 ) ) | |
| 15 | ovex | ⊢ ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ∈ V | |
| 16 | 13 14 15 | fvmpt | ⊢ ( 𝑊 ∈ V → ( toHL ‘ 𝑊 ) = ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) |
| 17 | 1 16 | eqtrid | ⊢ ( 𝑊 ∈ V → 𝐾 = ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) |
| 18 | 5 17 | syl | ⊢ ( 𝑊 ∈ 𝑉 → 𝐾 = ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) |