This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011) (Revised by Thierry Arnoux, 10-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mptfnf.0 | ⊢ Ⅎ 𝑥 𝐴 | |
| Assertion | mptfnf | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptfnf.0 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | eueq | ⊢ ( 𝐵 ∈ V ↔ ∃! 𝑦 𝑦 = 𝐵 ) | |
| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑦 = 𝐵 ) |
| 4 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝑦 = 𝐵 ∧ ∃* 𝑦 𝑦 = 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ) ) | |
| 5 | df-eu | ⊢ ( ∃! 𝑦 𝑦 = 𝐵 ↔ ( ∃ 𝑦 𝑦 = 𝐵 ∧ ∃* 𝑦 𝑦 = 𝐵 ) ) | |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑦 = 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝑦 = 𝐵 ∧ ∃* 𝑦 𝑦 = 𝐵 ) ) |
| 7 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } | |
| 8 | 7 | fneq1i | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ↔ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } Fn 𝐴 ) |
| 9 | df-fn | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } Fn 𝐴 ↔ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ∧ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = 𝐴 ) ) | |
| 10 | 8 9 | bitri | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ↔ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ∧ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = 𝐴 ) ) |
| 11 | moanimv | ⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑦 = 𝐵 ) ) | |
| 12 | 11 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑦 = 𝐵 ) ) |
| 13 | funopab | ⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) | |
| 14 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑦 = 𝐵 ) ) | |
| 15 | 12 13 14 | 3bitr4ri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ↔ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ) |
| 16 | eqcom | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } = 𝐴 ↔ 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } ) | |
| 17 | dmopab | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } | |
| 18 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) | |
| 19 | 18 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } |
| 20 | 17 19 | eqtri | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } |
| 21 | 20 | eqeq1i | ⊢ ( dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = 𝐴 ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } = 𝐴 ) |
| 22 | pm4.71 | ⊢ ( ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) ) | |
| 23 | 22 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝑦 = 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) ) |
| 24 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝑦 = 𝐵 ) ) | |
| 25 | 1 | eqabf | ⊢ ( 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) ) |
| 26 | 23 24 25 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ↔ 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } ) |
| 27 | 16 21 26 | 3bitr4ri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ↔ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = 𝐴 ) |
| 28 | 15 27 | anbi12i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ) ↔ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ∧ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = 𝐴 ) ) |
| 29 | ancom | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ) ) | |
| 30 | 10 28 29 | 3bitr2i | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ) ) |
| 31 | 4 6 30 | 3bitr4ri | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑦 = 𝐵 ) |
| 32 | 3 31 | bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |