This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of a class variable and a class abstraction. In this version, the fact that x is a nonfree variable in A is explicitly stated as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017) Avoid ax-13 . (Revised by Wolf Lammen, 13-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabf.0 | ⊢ Ⅎ 𝑥 𝐴 | |
| Assertion | eqabf | ⊢ ( 𝐴 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabf.0 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } | |
| 3 | 1 2 | cleqf | ⊢ ( 𝐴 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑥 ∣ 𝜑 } ) ) |
| 4 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) | |
| 5 | 4 | bibi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) ) |
| 7 | 3 6 | bitri | ⊢ ( 𝐴 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) ) |