This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a mapping of subsets to their image of a bijection. (Contributed by AV, 23-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptcnfimad.m | ⊢ 𝑀 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 “ 𝑥 ) ) | |
| mptcnfimad.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) | ||
| mptcnfimad.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝒫 𝑉 ) | ||
| mptcnfimad.r | ⊢ ( 𝜑 → ran 𝑀 ⊆ 𝒫 𝑊 ) | ||
| mptcnfimad.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) | ||
| Assertion | mptcnfimad | ⊢ ( 𝜑 → ◡ 𝑀 = ( 𝑦 ∈ ran 𝑀 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptcnfimad.m | ⊢ 𝑀 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 “ 𝑥 ) ) | |
| 2 | mptcnfimad.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) | |
| 3 | mptcnfimad.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝒫 𝑉 ) | |
| 4 | mptcnfimad.r | ⊢ ( 𝜑 → ran 𝑀 ⊆ 𝒫 𝑊 ) | |
| 5 | mptcnfimad.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) | |
| 6 | 1 | cnveqi | ⊢ ◡ 𝑀 = ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 “ 𝑥 ) ) |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 8 | f1of | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 ⟶ 𝑊 ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝑊 ) |
| 10 | 9 5 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 11 | 10 | imaexd | ⊢ ( 𝜑 → ( 𝐹 “ 𝑥 ) ∈ V ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 “ 𝑥 ) ∈ V ) |
| 13 | 1 7 12 | elrnmpt1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 “ 𝑥 ) ∈ ran 𝑀 ) |
| 14 | f1of1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –1-1→ 𝑊 ) | |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
| 16 | ssel | ⊢ ( 𝐴 ⊆ 𝒫 𝑉 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝑉 ) ) | |
| 17 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝑉 → 𝑥 ⊆ 𝑉 ) | |
| 18 | 16 17 | syl6 | ⊢ ( 𝐴 ⊆ 𝒫 𝑉 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝑉 ) ) |
| 19 | 3 18 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝑉 ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ⊆ 𝑉 ) |
| 21 | f1imacnv | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑥 ⊆ 𝑉 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) = 𝑥 ) | |
| 22 | 21 | eqcomd | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑥 ⊆ 𝑉 ) → 𝑥 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) |
| 23 | 15 20 22 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) |
| 24 | 13 23 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 “ 𝑥 ) ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) ) |
| 25 | eleq1 | ⊢ ( 𝑦 = ( 𝐹 “ 𝑥 ) → ( 𝑦 ∈ ran 𝑀 ↔ ( 𝐹 “ 𝑥 ) ∈ ran 𝑀 ) ) | |
| 26 | imaeq2 | ⊢ ( 𝑦 = ( 𝐹 “ 𝑥 ) → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) | |
| 27 | 26 | eqeq2d | ⊢ ( 𝑦 = ( 𝐹 “ 𝑥 ) → ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ↔ 𝑥 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) ) |
| 28 | 25 27 | anbi12d | ⊢ ( 𝑦 = ( 𝐹 “ 𝑥 ) → ( ( 𝑦 ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) ↔ ( ( 𝐹 “ 𝑥 ) ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) ) ) |
| 29 | 24 28 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = ( 𝐹 “ 𝑥 ) → ( 𝑦 ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 30 | 29 | expimpd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) → ( 𝑦 ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 31 | 12 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 “ 𝑥 ) ∈ V ) |
| 32 | 1 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 “ 𝑥 ) ∈ V → 𝑀 Fn 𝐴 ) |
| 33 | 31 32 | syl | ⊢ ( 𝜑 → 𝑀 Fn 𝐴 ) |
| 34 | fvelrnb | ⊢ ( 𝑀 Fn 𝐴 → ( 𝑦 ∈ ran 𝑀 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑀 ‘ 𝑥 ) = 𝑦 ) ) | |
| 35 | 33 34 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝑀 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑀 ‘ 𝑥 ) = 𝑦 ) ) |
| 36 | imaeq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑧 ) ) | |
| 37 | 36 | cbvmptv | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 “ 𝑧 ) ) |
| 38 | 1 37 | eqtri | ⊢ 𝑀 = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 “ 𝑧 ) ) |
| 39 | 38 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 “ 𝑧 ) ) ) |
| 40 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 = 𝑥 ) → 𝑧 = 𝑥 ) | |
| 41 | 40 | imaeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 = 𝑥 ) → ( 𝐹 “ 𝑧 ) = ( 𝐹 “ 𝑥 ) ) |
| 42 | 39 41 7 12 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑥 ) = ( 𝐹 “ 𝑥 ) ) |
| 43 | 42 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑥 ) = 𝑦 ↔ ( 𝐹 “ 𝑥 ) = 𝑦 ) ) |
| 44 | 26 | eqcoms | ⊢ ( ( 𝐹 “ 𝑥 ) = 𝑦 → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) |
| 45 | 44 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 “ 𝑥 ) = 𝑦 ) → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) |
| 46 | 15 20 21 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) = 𝑥 ) |
| 47 | 46 7 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ∈ 𝐴 ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 “ 𝑥 ) = 𝑦 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ∈ 𝐴 ) |
| 49 | 45 48 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 “ 𝑥 ) = 𝑦 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) |
| 50 | 49 | ex | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 “ 𝑥 ) = 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) ) |
| 51 | 43 50 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑥 ) = 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) ) |
| 52 | 51 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ( 𝑀 ‘ 𝑥 ) = 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) ) |
| 53 | 35 52 | sylbid | ⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝑀 → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) ) |
| 54 | 53 | imp | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑀 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) |
| 55 | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –onto→ 𝑊 ) | |
| 56 | 2 55 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝑊 ) |
| 57 | ssel | ⊢ ( ran 𝑀 ⊆ 𝒫 𝑊 → ( 𝑦 ∈ ran 𝑀 → 𝑦 ∈ 𝒫 𝑊 ) ) | |
| 58 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝑊 → 𝑦 ⊆ 𝑊 ) | |
| 59 | 57 58 | syl6 | ⊢ ( ran 𝑀 ⊆ 𝒫 𝑊 → ( 𝑦 ∈ ran 𝑀 → 𝑦 ⊆ 𝑊 ) ) |
| 60 | 4 59 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝑀 → 𝑦 ⊆ 𝑊 ) ) |
| 61 | 60 | imp | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑀 ) → 𝑦 ⊆ 𝑊 ) |
| 62 | foimacnv | ⊢ ( ( 𝐹 : 𝑉 –onto→ 𝑊 ∧ 𝑦 ⊆ 𝑊 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) | |
| 63 | 56 61 62 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑀 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
| 64 | 63 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑀 ) → 𝑦 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 65 | 54 64 | jca | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑀 ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 66 | eleq1 | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) ) | |
| 67 | imaeq2 | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 68 | 67 | eqeq2d | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝑦 = ( 𝐹 “ 𝑥 ) ↔ 𝑦 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 69 | 66 68 | anbi12d | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) ↔ ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
| 70 | 65 69 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑀 ) → ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) ) ) |
| 71 | 70 | expimpd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) ) ) |
| 72 | 30 71 | impbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) ↔ ( 𝑦 ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 73 | 72 | mptcnv | ⊢ ( 𝜑 → ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑦 ∈ ran 𝑀 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 74 | 6 73 | eqtrid | ⊢ ( 𝜑 → ◡ 𝑀 = ( 𝑦 ∈ ran 𝑀 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) |