This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a mapping of subsets to their image of a bijection. (Contributed by AV, 23-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptcnfimad.m | |- M = ( x e. A |-> ( F " x ) ) |
|
| mptcnfimad.f | |- ( ph -> F : V -1-1-onto-> W ) |
||
| mptcnfimad.a | |- ( ph -> A C_ ~P V ) |
||
| mptcnfimad.r | |- ( ph -> ran M C_ ~P W ) |
||
| mptcnfimad.v | |- ( ph -> V e. U ) |
||
| Assertion | mptcnfimad | |- ( ph -> `' M = ( y e. ran M |-> ( `' F " y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptcnfimad.m | |- M = ( x e. A |-> ( F " x ) ) |
|
| 2 | mptcnfimad.f | |- ( ph -> F : V -1-1-onto-> W ) |
|
| 3 | mptcnfimad.a | |- ( ph -> A C_ ~P V ) |
|
| 4 | mptcnfimad.r | |- ( ph -> ran M C_ ~P W ) |
|
| 5 | mptcnfimad.v | |- ( ph -> V e. U ) |
|
| 6 | 1 | cnveqi | |- `' M = `' ( x e. A |-> ( F " x ) ) |
| 7 | simpr | |- ( ( ph /\ x e. A ) -> x e. A ) |
|
| 8 | f1of | |- ( F : V -1-1-onto-> W -> F : V --> W ) |
|
| 9 | 2 8 | syl | |- ( ph -> F : V --> W ) |
| 10 | 9 5 | fexd | |- ( ph -> F e. _V ) |
| 11 | 10 | imaexd | |- ( ph -> ( F " x ) e. _V ) |
| 12 | 11 | adantr | |- ( ( ph /\ x e. A ) -> ( F " x ) e. _V ) |
| 13 | 1 7 12 | elrnmpt1d | |- ( ( ph /\ x e. A ) -> ( F " x ) e. ran M ) |
| 14 | f1of1 | |- ( F : V -1-1-onto-> W -> F : V -1-1-> W ) |
|
| 15 | 2 14 | syl | |- ( ph -> F : V -1-1-> W ) |
| 16 | ssel | |- ( A C_ ~P V -> ( x e. A -> x e. ~P V ) ) |
|
| 17 | elpwi | |- ( x e. ~P V -> x C_ V ) |
|
| 18 | 16 17 | syl6 | |- ( A C_ ~P V -> ( x e. A -> x C_ V ) ) |
| 19 | 3 18 | syl | |- ( ph -> ( x e. A -> x C_ V ) ) |
| 20 | 19 | imp | |- ( ( ph /\ x e. A ) -> x C_ V ) |
| 21 | f1imacnv | |- ( ( F : V -1-1-> W /\ x C_ V ) -> ( `' F " ( F " x ) ) = x ) |
|
| 22 | 21 | eqcomd | |- ( ( F : V -1-1-> W /\ x C_ V ) -> x = ( `' F " ( F " x ) ) ) |
| 23 | 15 20 22 | syl2an2r | |- ( ( ph /\ x e. A ) -> x = ( `' F " ( F " x ) ) ) |
| 24 | 13 23 | jca | |- ( ( ph /\ x e. A ) -> ( ( F " x ) e. ran M /\ x = ( `' F " ( F " x ) ) ) ) |
| 25 | eleq1 | |- ( y = ( F " x ) -> ( y e. ran M <-> ( F " x ) e. ran M ) ) |
|
| 26 | imaeq2 | |- ( y = ( F " x ) -> ( `' F " y ) = ( `' F " ( F " x ) ) ) |
|
| 27 | 26 | eqeq2d | |- ( y = ( F " x ) -> ( x = ( `' F " y ) <-> x = ( `' F " ( F " x ) ) ) ) |
| 28 | 25 27 | anbi12d | |- ( y = ( F " x ) -> ( ( y e. ran M /\ x = ( `' F " y ) ) <-> ( ( F " x ) e. ran M /\ x = ( `' F " ( F " x ) ) ) ) ) |
| 29 | 24 28 | syl5ibrcom | |- ( ( ph /\ x e. A ) -> ( y = ( F " x ) -> ( y e. ran M /\ x = ( `' F " y ) ) ) ) |
| 30 | 29 | expimpd | |- ( ph -> ( ( x e. A /\ y = ( F " x ) ) -> ( y e. ran M /\ x = ( `' F " y ) ) ) ) |
| 31 | 12 | ralrimiva | |- ( ph -> A. x e. A ( F " x ) e. _V ) |
| 32 | 1 | fnmpt | |- ( A. x e. A ( F " x ) e. _V -> M Fn A ) |
| 33 | 31 32 | syl | |- ( ph -> M Fn A ) |
| 34 | fvelrnb | |- ( M Fn A -> ( y e. ran M <-> E. x e. A ( M ` x ) = y ) ) |
|
| 35 | 33 34 | syl | |- ( ph -> ( y e. ran M <-> E. x e. A ( M ` x ) = y ) ) |
| 36 | imaeq2 | |- ( x = z -> ( F " x ) = ( F " z ) ) |
|
| 37 | 36 | cbvmptv | |- ( x e. A |-> ( F " x ) ) = ( z e. A |-> ( F " z ) ) |
| 38 | 1 37 | eqtri | |- M = ( z e. A |-> ( F " z ) ) |
| 39 | 38 | a1i | |- ( ( ph /\ x e. A ) -> M = ( z e. A |-> ( F " z ) ) ) |
| 40 | simpr | |- ( ( ( ph /\ x e. A ) /\ z = x ) -> z = x ) |
|
| 41 | 40 | imaeq2d | |- ( ( ( ph /\ x e. A ) /\ z = x ) -> ( F " z ) = ( F " x ) ) |
| 42 | 39 41 7 12 | fvmptd | |- ( ( ph /\ x e. A ) -> ( M ` x ) = ( F " x ) ) |
| 43 | 42 | eqeq1d | |- ( ( ph /\ x e. A ) -> ( ( M ` x ) = y <-> ( F " x ) = y ) ) |
| 44 | 26 | eqcoms | |- ( ( F " x ) = y -> ( `' F " y ) = ( `' F " ( F " x ) ) ) |
| 45 | 44 | adantl | |- ( ( ( ph /\ x e. A ) /\ ( F " x ) = y ) -> ( `' F " y ) = ( `' F " ( F " x ) ) ) |
| 46 | 15 20 21 | syl2an2r | |- ( ( ph /\ x e. A ) -> ( `' F " ( F " x ) ) = x ) |
| 47 | 46 7 | eqeltrd | |- ( ( ph /\ x e. A ) -> ( `' F " ( F " x ) ) e. A ) |
| 48 | 47 | adantr | |- ( ( ( ph /\ x e. A ) /\ ( F " x ) = y ) -> ( `' F " ( F " x ) ) e. A ) |
| 49 | 45 48 | eqeltrd | |- ( ( ( ph /\ x e. A ) /\ ( F " x ) = y ) -> ( `' F " y ) e. A ) |
| 50 | 49 | ex | |- ( ( ph /\ x e. A ) -> ( ( F " x ) = y -> ( `' F " y ) e. A ) ) |
| 51 | 43 50 | sylbid | |- ( ( ph /\ x e. A ) -> ( ( M ` x ) = y -> ( `' F " y ) e. A ) ) |
| 52 | 51 | rexlimdva | |- ( ph -> ( E. x e. A ( M ` x ) = y -> ( `' F " y ) e. A ) ) |
| 53 | 35 52 | sylbid | |- ( ph -> ( y e. ran M -> ( `' F " y ) e. A ) ) |
| 54 | 53 | imp | |- ( ( ph /\ y e. ran M ) -> ( `' F " y ) e. A ) |
| 55 | f1ofo | |- ( F : V -1-1-onto-> W -> F : V -onto-> W ) |
|
| 56 | 2 55 | syl | |- ( ph -> F : V -onto-> W ) |
| 57 | ssel | |- ( ran M C_ ~P W -> ( y e. ran M -> y e. ~P W ) ) |
|
| 58 | elpwi | |- ( y e. ~P W -> y C_ W ) |
|
| 59 | 57 58 | syl6 | |- ( ran M C_ ~P W -> ( y e. ran M -> y C_ W ) ) |
| 60 | 4 59 | syl | |- ( ph -> ( y e. ran M -> y C_ W ) ) |
| 61 | 60 | imp | |- ( ( ph /\ y e. ran M ) -> y C_ W ) |
| 62 | foimacnv | |- ( ( F : V -onto-> W /\ y C_ W ) -> ( F " ( `' F " y ) ) = y ) |
|
| 63 | 56 61 62 | syl2an2r | |- ( ( ph /\ y e. ran M ) -> ( F " ( `' F " y ) ) = y ) |
| 64 | 63 | eqcomd | |- ( ( ph /\ y e. ran M ) -> y = ( F " ( `' F " y ) ) ) |
| 65 | 54 64 | jca | |- ( ( ph /\ y e. ran M ) -> ( ( `' F " y ) e. A /\ y = ( F " ( `' F " y ) ) ) ) |
| 66 | eleq1 | |- ( x = ( `' F " y ) -> ( x e. A <-> ( `' F " y ) e. A ) ) |
|
| 67 | imaeq2 | |- ( x = ( `' F " y ) -> ( F " x ) = ( F " ( `' F " y ) ) ) |
|
| 68 | 67 | eqeq2d | |- ( x = ( `' F " y ) -> ( y = ( F " x ) <-> y = ( F " ( `' F " y ) ) ) ) |
| 69 | 66 68 | anbi12d | |- ( x = ( `' F " y ) -> ( ( x e. A /\ y = ( F " x ) ) <-> ( ( `' F " y ) e. A /\ y = ( F " ( `' F " y ) ) ) ) ) |
| 70 | 65 69 | syl5ibrcom | |- ( ( ph /\ y e. ran M ) -> ( x = ( `' F " y ) -> ( x e. A /\ y = ( F " x ) ) ) ) |
| 71 | 70 | expimpd | |- ( ph -> ( ( y e. ran M /\ x = ( `' F " y ) ) -> ( x e. A /\ y = ( F " x ) ) ) ) |
| 72 | 30 71 | impbid | |- ( ph -> ( ( x e. A /\ y = ( F " x ) ) <-> ( y e. ran M /\ x = ( `' F " y ) ) ) ) |
| 73 | 72 | mptcnv | |- ( ph -> `' ( x e. A |-> ( F " x ) ) = ( y e. ran M |-> ( `' F " y ) ) ) |
| 74 | 6 73 | eqtrid | |- ( ph -> `' M = ( y e. ran M |-> ( `' F " y ) ) ) |