This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 25-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplval.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | ||
| mplval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| mplval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplval.u | ⊢ 𝑈 = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } | ||
| Assertion | mplval | ⊢ 𝑃 = ( 𝑆 ↾s 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplval.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 3 | mplval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | mplval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mplval.u | ⊢ 𝑈 = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } | |
| 6 | ovexd | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPwSer 𝑟 ) ∈ V ) | |
| 7 | id | ⊢ ( 𝑠 = ( 𝑖 mPwSer 𝑟 ) → 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) | |
| 8 | oveq12 | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPwSer 𝑟 ) = ( 𝐼 mPwSer 𝑅 ) ) | |
| 9 | 7 8 | sylan9eqr | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → 𝑠 = ( 𝐼 mPwSer 𝑅 ) ) |
| 10 | 9 2 | eqtr4di | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → 𝑠 = 𝑆 ) |
| 11 | 10 | fveq2d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
| 12 | 11 3 | eqtr4di | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( Base ‘ 𝑠 ) = 𝐵 ) |
| 13 | simplr | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → 𝑟 = 𝑅 ) | |
| 14 | 13 | fveq2d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
| 15 | 14 4 | eqtr4di | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( 0g ‘ 𝑟 ) = 0 ) |
| 16 | 15 | breq2d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( 𝑓 finSupp ( 0g ‘ 𝑟 ) ↔ 𝑓 finSupp 0 ) ) |
| 17 | 12 16 | rabeqbidv | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ) |
| 18 | 17 5 | eqtr4di | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } = 𝑈 ) |
| 19 | 10 18 | oveq12d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( 𝑠 ↾s { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) = ( 𝑆 ↾s 𝑈 ) ) |
| 20 | 6 19 | csbied | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ⦋ ( 𝑖 mPwSer 𝑟 ) / 𝑠 ⦌ ( 𝑠 ↾s { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) = ( 𝑆 ↾s 𝑈 ) ) |
| 21 | df-mpl | ⊢ mPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ ( 𝑖 mPwSer 𝑟 ) / 𝑠 ⦌ ( 𝑠 ↾s { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) ) | |
| 22 | ovex | ⊢ ( 𝑆 ↾s 𝑈 ) ∈ V | |
| 23 | 20 21 22 | ovmpoa | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ( 𝑆 ↾s 𝑈 ) ) |
| 24 | reldmmpl | ⊢ Rel dom mPoly | |
| 25 | 24 | ovprc | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ∅ ) |
| 26 | ress0 | ⊢ ( ∅ ↾s 𝑈 ) = ∅ | |
| 27 | 25 26 | eqtr4di | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ( ∅ ↾s 𝑈 ) ) |
| 28 | reldmpsr | ⊢ Rel dom mPwSer | |
| 29 | 28 | ovprc | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
| 30 | 2 29 | eqtrid | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑆 = ∅ ) |
| 31 | 30 | oveq1d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑆 ↾s 𝑈 ) = ( ∅ ↾s 𝑈 ) ) |
| 32 | 27 31 | eqtr4d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ( 𝑆 ↾s 𝑈 ) ) |
| 33 | 23 32 | pm2.61i | ⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝑆 ↾s 𝑈 ) |
| 34 | 1 33 | eqtri | ⊢ 𝑃 = ( 𝑆 ↾s 𝑈 ) |